Beginner’s guide to Imagine Application Programming

1.0

Overview

1.1

This document explains writing Imagine applications to areader familiar with single
processor programming techniques and generalized vector processors. A brief overview
of the Imagine system from the applications programming perspective is presented,
aong with the Imagine programming model and tools. A simple example on vector
addition follows, accompanied by explanation. An on-line version of this example can
befoundinim_apps/vect_add. The steps required to integrate an application into the
Imagine simulator are then described. Finally, additional details of programming, either
not encountered in the example or not explained in detail, are covered with the help of
another example: fft. An on-line version of this example can be found in im_apps/
fft_new. Please note that this documentation is at a preliminary stage and hence will
updated on aregular basis. For the same reason, many sections may |ook incomplete.
Corrections, comments, and suggestions on this document are always welcome and
should be sent to abhishek@cva.stanford.edu.

Imagine

Imagineisaprogrammable single-chip processor that supports the stream-programming
model. Imagine provides a three tiered storage bandwidth hierarchy consisting of a
streaming memory system, alarge (128KB) stream register file, and direct forwarding
of results among arithmetic units. Eight clusters of parallel arithmetic units process data
retrieved from the shared stream register file. Each cluster includes three adders, two
multipliers, one divide/square unit, one 256-entry local scratch-pad register file and one
inter-cluster communication unit (see figure 1 in The Imagine instruction Set Architec-
ture). The stream register file acts as a buffer between the arithmetic clusters and Imag-
ine's main memory.

Imagine is a coprocessor that is programmed at two levels: kernel and application. A
kernel isasmall program that runs on the arithmetic clusters of Imagine, and is repeated
for each successive element in the input streams to produce output streams (which may
be the input stream for the next kernel in the application). Kernels are coded in a pro-
gramming language called kernel C, using the expression syntax of the C language. Ker-
nels may accesslocal variables, read input streams, and write output streams, but may
not make arbitrary memory references. Kernels are compiled into microcode programs
that sequence the units within the arithmetic clusters to carry out the kernel function on
each stream element in turn. A separate memory spaceis reserved for storing the micro-
code programs, which the clusters execute in parallel. The clusters can only obtain data
from the stream register file, and can only retrieve instructions from the microcode
store. An Imagine application is a set of kernels connected by streams. The application
level programming is done using streamC language, which uses the syntax of C++ lan-

guage.

While the Imagine stream processor executes a microcode assembly language (pasm),
the general -purpose processor (residing in host) executes a streamC code, complied in
its native instruction set. The microcode carries out the bulk of the computation, by exe-
cuting kernels in the clusters, whereas the streamC program manages the overall opera-
tion with the help of Imagine's stream controller, by initiaizing the stream register file,

March 10, 2002 1

Beginner’s guide to Imagine Application Programming

1.2

setting up the memory for the microcode, directing the stream processor to execute it,
and then storing back its result to main memory.

Imagine programming model and tools

The StreamC language, having close resemblance to C++, is used for writing programs
that utilize the Imagine stream processing system to operate on streams (series of ele-
ments). StreamC includes commands for transferring streams of data to and from the
Imagine system and between Imagine processors, for defining control and data flow
between kernels and for executing kernels (essentially calling a series of kernels).

The kernels, written in kernelC, are functions that operate on streams by looping over
streams (operating on a single element at atime). Random data access is not allowed
and alimited amount of control flow exists.

Details of the StreamC and Kernel C language specifications are available in section 4
and section 3 respectively, of ips_user.pdf.

Since the Imagine chip hasn't been built yet, we have to run Imagine applications under
asimulator program, isim. This program can be supplied with a series of commands
either through the keyboard or from afile that tell it to load and store memory to and
from files and to execute applications. There are four available Imagine programming
tools:-

1. Kernéd scheduler (iscd): Single-phase VLIW scheduler, which is optimized for
individual kernels by handling functional unit (cluster) assignment and communica
tion scheduling between the clusters and modul o-software pipelining. It generates
the microcode for Imagine.

The VC++ preprocessor convertsthe kernelC fileinto a.i (intermediate) file, which
the Kernel C compiler actually compilesto produce a .uc (microcode) file. This code
is sent to Imagine at the start of the application. It sitsin Imagine memory until itis
needed, at which point it isloaded into the on-chip microcode store.

2. Stream scheduler (istream): Converts StreamC functions into Imagine operations.
It determines the allocation of the Stream Register File (SRF), handles large streams
(using Strip-mining or Double-buffering), resolves dependencies between operations
and performs other such high-level optimizations. Stream scheduler is profile based,
running once with ssimple alocation, collecting usage information, performing good
alocation and running repeatedly with good allocation.

The streamC program runs on the host. When it calls akernel, a bunch of high-level
operations are sent to Imagine, which load the input streams, execute the kernel, and
save the output streams. The stream scheduler (istream) generates these operations
such that all of the streams can fit in the SRF at the same time. It allocates spacein
the SRF for all streams that pass through the SRF regardless of where they come
from or go. Ideally, an application sends some initial input to Imagine from the host,
and Imagine does alot of processing on it, keeping in the SRF when possible and the
off-chip memory if itstoo big, and then sends back only the final results.

March 10, 2002

Beginner’s guide to Imagine Application Programming

3. Schedulevisualizer (schedviz): Used for application and kernel visualization.
Enables one to visualize SRF allocation among different streams and the kernels
operating on them.

4. Interactive debugger (idebug): Provides debug functionality for program develop-
ment. This only simulates functionality to test the working of streamC and kernel C.

Compile-time

StreamC KernelC
; C++ compiler ;
Run-time v
application.exe
(]
= Y c
o > microcode (=
T ©
E
profile
Visualization L v
application.viz kernel.viz

Any Imagine application runsusing two DLLs:

e jisimhost.dll -- run-time linked library that contains stream scheduler. With real
hardware, it would run on the host processor.

= isim.dll (or isimcore.dll) -- run-time linked library that simulates the Imagine pro-
CESSOr.

The interaction between the different features are shown in the following figure:

March 10, 2002 3

Beginner’s guide to Imagine Application Programming

isimhost.dll
Profile Translated
streamC
} —»| istream Run-time
StreamC file > —P dispatcher
\ 4
isim.dll
Imagine
Intermediate file (.i) microcode
) VC++ pre- T
KernelCfile procr > iscd

Before we attempt to learn about writing applications, we must first get the code for all
these tools and create the DLLSs.

March 10, 2002

Beginner’s guide to Imagine Application Programming

121

122

Getting the Most Recent tools (and other files)

For people in Stanford: You should use Sourcesafe to get these. The //smorgas-
board/programs/README.PROGRAMS file describes how to install Source Safe
and Visual C++, which are required to build the Scheduler and isim tools. One impor-
tant point to note is that these programs require that Visual C++, Service Pack 2 or Ser-
vice Pack 5 be used. Any other service pack, even Service Pack 3, may cause build
errors. Once Visual C++ and Source Safe areinstalled, use Source Safe to download the
most recent version of tools. Select all the files in the /working directory and press
CTRL+G (Get Most Recent Version). Source Safe may prompt you for aworking direc-
tory, in which case you can provide c:\working or d:\working, which is a directory
on your hard drive, that should be automatically backed up periodically. In the rest of
the document, this working directory will be referred to as <your working dir>.

For people outside Stanford: You should get the archivein /pub/imagine from our ftp
server. Try doing ftp cva.stanford.edu and then cd /pub/imagine.

Using Visual C++to Compile the Tools

1. Opentools.dsw file using Visual C++ by going to <your working dir>\tools (eg.
D:\working\tools or C:\ working\tools). Thisisaworkspacefilethat will compilethe
toolsfor you, which areincluded in it as projects.

2. We need to build the following projects: isimdll, isimhostdll, isimexe and iscd. Let
us first get the project settings correct. The steps needed are as follows (steps indi-
cate where your mouse button should click):

= Add the following to your system path (using Settings > Control Panel > Sys-
tem):
<your working dir>\tools\isim\isimexe\Release
<your working dir>\tools\isim\isimexe\Debug
<your working dir>\tools\iscd\Release

= Add the following environment variables (using Settings > Control Panel > Sys-
tem):

iscd_preproc = C:\Program Files\Microsoft Visual Stu-
dio\VC98\Bin\CL.EXE

iscd_includes = <your working dir>\tools\isim\isimexe\blank_headers

These are required to provide “C++ preprocessor support” to handle the #includes,
#defines, etc. in your source files.

= Project settings > Link > Customize (pulldown) > Output file name.

Fill-up in order of the projects mentioned above (i.e isimdll, isimhostdll, isimexe
and iscd):

Release:
.\isimexe\Release\isimcore.dll

March 10, 2002 5

Beginner’s guide to Imagine Application Programming

.\isimexe\Release\isimhost.dll
Release\isim.exe
Release\iscd.exe

Debug:
.\isimexe\Debug\isimcoredbg.dll
.\isimexe\Debug\isimhostdbg.dll
Debug\isim.exe

Debug\iscd.exe

= Project Settings > Link > General > Output file name
Fill-up the same settingsin the same order.

= Project Settings > Link > General > Object/Library modules
Only for isimhostdll and isimexe (in order):

Release:
isimcore.lib
isimcore.lib isimhost.lib

Debug:
isimcoredbg.lib
isimcoredbg.lib isimhostdbg.lib

3. Now, we build the projectsin the following order: isimcore.dll > isimhost.dll >
isim.exe (due to the dependency) and iscd. (Instead of building iscd, you can use
<your working dir>\im_apps\scd.bat)

Now you are ready to write an aplication.

March 10, 2002

Beginner’s guide to Imagine Application Programming

2.0

Writing application (vector addition used as
example)

21

Asin every other program, first you need to figure out the inputs, outputs and the algo-
rithm to be used and after that writing an Imagine application is as easy as 1-2-3-4:

1. Write a shared header file declaring the records that need to be used and the kernel
declarations. Asin C, treat the kernels as function calls.

2. Write a StreamC program to implement everything except the computationally
intensive portion of the problem: it should just declare the streams (inputs and out-
puts), setup the stream register file, call the appropriate kernels (for the required
computation), and store the result in most cases.

3. Writethe kernel in kernel C to carry out the actual computation (the algorithm).

4. Writeasimulator script to load test datainto memory and store the final result to
disk.

The steps are explained below with the help of avector addition example.

Shared header file

Thefile naming convention is <name>.hpp (eg. vect_add.hpp). Thisfile consists of
the records to be used and the kernel declarations. Write the header file according to the
syntax given in section 2.3.1 of ips_user.pdf.

Since the kernel runs on the Imagine processor, we should obviously put as much of the
computational load there as possible, leaving the general purpose processor to mundane
tasks such as transferring data between main memory and the stream register file for
processing. So, let us declare akernel called vadd, which takes two streams of vectors
as inputs and produces a stream of vectors by adding the corresponding vectorsin the
input streams. Moreover, Imagine being a stream-based architecture, the kernel here
should not just add two individual vectors, but instead should accept two streams of
many vectors, add them, and output a single stream of the resulting vectors. We will
consider a4-variable (floating point) vector. We will call our vector as vvector, which
is defined using record as shown below:

#i f ndef VECT_ADD
#defi ne VECT_ADD

#i nclude "idb_types. hpp"
#i nclude "idb_deftypes. hpp"

record vvector {
float x, vy, z, w
b

/1 vector declaration

kernel vadd(istreancvvector> in_1, istreankvvector> in_2,
ostreanxvvector> out);

March 10, 2002 7

Beginner’s guide to Imagine Application Programming

KERNELDECL (vadd) ;
/1 kernel declaration

#defi ne vadd KERNELCALL(vadd)
// defines the kernel call

#i ncl ude "idb_undeftypes. hpp"
#endi f

2.2 streamC program

Thefile naming convention is <name>_sc.cpp (eg. vect_add_sc.cpp). Thesyntax is
very much like C++ apart from the imagine basic types and special functions to operate
on streams. Now that we've decided what functionality the kernel isgoing to give us, we
can write the streamC code to call it with the required streams. The input streams are
assumed to be availablein filesim_apps\vect_add\vectorl.vec and vector2.vec. In
order to keep things simple, we take a stream of 8 vectors. The streamC codeis as fol-

lows:

#i ncl ude "idb_streant. hpp"
#i ncl ude "vect _add. hpp"
/Ishared files

STREAMPROGE vect _add) ;
/1 defining stream program

voi d vect _add(StreantSchedul erl nterface& scd, String args)

{
if(args == ""){

cout << "Sorry, have to pass a string to do example");

}

/1 A sinple vector addition exanple
el se if(args == "doExanpl e"){

/!l Load the first stream of vectors
/!l declare a streamof that size first

i mstreankvvector> i nputl = newStreanDat a<vvect or >(8);

streanlLoadFi | e("vect _add\vectorl.vec", "txt", "",

/1l Load the second stream of vectors
/'l declare a streamof that size first

i mstreankvvector> input2 = newStreanDat a<vvect or >(8);

streanlLoadFi | e("vect _add\vector2.vec", "txt", "",

/1 declare output stream

i mstreankvvector> data_out = newStreanDat a<vvector>(8);

March 10, 2002

Beginner’s guide to Imagine Application Programming

/1 Print a message telling that we're about to run the kernel
cout << "Beginning conputation." << endl;

/1 Call the kernel to do the conputation.
vadd(i nputl, input2, data_out);

/1 Print a nessage telling we’ve finished running the kernel
cout << "Finished conputation." << endl;

/'l save and verify final output data
streanfSaveFi | e("vect _add\ out put.vec", "txt", "E', data_out);
st reanConpar eFi | e("vect _add\ add. vec", data_out, 0.001f, "a");
}
}

The first thing we notice is that the streamC subroutine accepts a string argument. This
string can be set from the simulator command line in the simulator script (shown later).
To call our vector addition example, we set this string to "doExample”. We could easily
add other if...elseif clausesto respond with different actions to different strings (com-
mands).

Looking into the code for the addition, we see that the first thing it doesis declare the
input streams load the two sets of vectorsinto the stream register file. Remember that
the arithmetic clusters (the processors on which the kernel executes) can only accessthe
stream register file and their own internal registers, but not the main memory space of
the Imagine board.

Let uslook more closely into the streamSaveFile and streemCompareFile syntax:-
streamSaveFile(file, type, args, inl)
"file" (thefileto saveinto)

"type" (there's abunch of types: "txt", "bin", "binPtr", "pgm", "ppm", "pnm", "ras-
ter", "rtl" :- mostly you'll be interested in "txt")

"args' (they depend on what type you have, but for "txt", you probably want "d"
(decimal), "X" (hex), or "E" (float))

"inl" (the stream to save)

streamCompareFile(scd, file, in1, threshold, args)
"file" (the comparison file)

"inl"(the stream to compare against)

"threshold" (how close does it have to match?Thisis a float)

"args'(must be\"a\" for absolute comparison, \"r\" for relative comparison, \"rle\"
for run length encoded comparison, or \"mitre\" for the mitre comparison)

March 10, 2002 9

Beginner’s guide to Imagine Application Programming

2.3

Thus, streamSaveFile isused to save the output generated while streemCompareFile
isused to test the contents of the output generated against the expected output contained
in"vect_add\add.vec". We alow the differences a tolerance of 0.005 (0.5%); if the
differences were above our indicated tolerance then an error message prints out.

Though in the stream files we used have .vec extension, they are essentially text files
(look them up inim_apps\vect_add). Hence, we use the type astxt and use "a" for abso-
lute comparision.

kernelC program

Thefile naming conventionis <name>_kc.cpp (eg. vect_add_kc.hpp). Thesyntax is
very much like in C++, apart from the new Imagine basic typesjust like in StreamC.
However the control flow is different. We can now examine the kernel that carries out
the addition of the vectors:

#i ncl ude "idb_kernel c. hpp"

//shared files
#i ncl ude "vect_add. hpp"
#i ncl ude "idb_kernel c2. hpp"

KERNELDEF(vadd, "vect_add\vect_add. uc");
/1 The mcrocode file to be generated

kernel vadd(istreancvvector> in_1, istreankvvector> in_2,
ostreanxvvect or > out)

| oop_strean(in_1)

/1 loop till all the elements of streamin_1 are not

/1 exhausted (since in_1 and in_2 are stream of sane |ength,
/1 both are exhausted after the | oop.

{

vvector vO, vl1, vz,

I/ These variables exist in the cluster's register space
/'l there are separate copies of these on each cluster

in_1 >> v0;

in_ 2 > vi;

/1 Read in one vector fromstreamin_1 and another from

[/l streamin_2. This operation is functionally equivalent to
/1 reading each conmponent separately.

v2.Xx = v0. X + vl1.Xx;
v2.y = v0.y + vl.y;
v2.z = v0.z + vl. z;
v2.w = v0.w + vl.w,

March 10, 2002 10

Beginner’s guide to Imagine Application Programming

/!l Add the two vectors
out << v2;
//put the result in the output stream

}
}

Noticethat thereare no if statements or conditional jumpsin this code. From the code, it
appears that the kernel operates on a single record at one time. Actually, each of the 8
clusters on Imagine run the same kernel on different elements of the stream simulta-
neously. The Kernel Scheduler compiles KernelC code into VLIW instructions. Thus,
under this architecture, each cluster always executes the same instruction, though on a
different data. If conditional jumps occurred, different arithmetic units could end up try-
ing to execute different instructions at the same time.

So, the only control structures available are loops. The kernelsloop on astream till it
completes operating on all the elements of a stream. The exact syntax for aloop and the
various allowable options are described in section 3 of ips_user.pdf).

The next set of operations retrieve data from the stream register file into the registers. It
isimportant to realize that all clusters share the input streams and hence aread instruc-
tion such as"in_1 >> v0" will read 8 elements out of the stream (recall that there are 8
clustersin Imagine). The elements are distributed among the clustersin around robin
fashion and are executed upon at the same time (SIMD operation). This makes reading
data more complicated than on a single cluster machine. Take the case of reading the
stream of vectorsfromin_1:a, b, ¢, d, e, f, g, hin our code. Intuitively, we'd think of
memory being structured as follows:

TABLE 1.

Non-Interleaved Stream Layout

1000 | 1001 | 1002 | 1003 | 1004 | 1005 | 1006 | 1007 | 1008 | 1009 | 1010

ax ay az aw b.x by b.z b.w c.X cy cz

1011 | 1012 | 1013 | 10124 | 1015 | 1016 | 1017 | 1018 | 1019 | 1020 | 1021

cw d.x dy dz d.w ex ey ez ew f.x f.y

But when we execute acommand like, "in_1 >> v0", wherev0Oisavariable stored in an
arithmetic unit's internal register file, vO will assumein_1.x asa.x on cluster 0, but
cluster 1's copy of in_1.x will assume a.y, and cluster 2's copy of in_1.x will be set to
a.z. Clearly, thisis not the intended result.

March 10, 2002 11

Beginner’s guide to Imagine Application Programming

In order to correct this problem, we must interleave the data as we transfer it from main
memory to the stream register file, so the SRF will be organized as follows:

TABLE 2.

Interleaved Stream Layout

1000 | 1001 | 1002 | 1003 | 1004 | 1005 | 1006 | 1007 | 1008 | 1009 | 1010

ax b.x c.X d.x ex f.x g.X h.x ay b.y cy

1011 | 1012 | 1013 | 1024 | 1015 | 1016 | 1017 | 1018 | 1019 | 1020 | 1021

dy ey fy gy h.y az b.z cz dz ez f.z

So, memory is now organized as 8 x coordinates, followed by 8 y coordinates, followed
by 8 z coordinates, etc. Since there are 8 clusters, a stream read will now result in cluster
0 getting a.x, cluster 1 getting b.x, etc. The next stream read will get cluster O a.y, clus-
ter 1 a.y, etc. We now get the expected result. A singleiteration of the loop of the vector
addition routine will add 8 vectorsin parallel, with each cluster doing a single vector
addition. Thus, for 16 vector additions, 2 iterations of the loop are necessary. Since the
stream write operations are also executed in parallel, the output stream will be inter-
leaved in the same format as the input stream.

Now, we are presented with the problem of converting the vector data from its"natural”
representation (x, y, z, w) to the interleaved representation described above. This could
easily involve some complex data manipulation, if it weren't for the fact that stream-
LoadFile and streamSaveFile can do this automatically from a file written orderly. It
isclear that if we only had three vectors and tried to interleave them asin table 1, we
would have to pad each component with 5 zeros in order to allow an 8-cluster read to
stay aligned. The usual solution for the case where we want to process a number of
records that is not amultiple of the machine cluster sizeisto pad the data with null ele-
ments to the correct length.

Now, let uslook at how the input files are written for streamLoadFile (streamCom-
pareFile and streamSaveFile aso follow the same format. The files consist of one or
moreregions. Eachregion startswitha“:”, followed by a“T” asthefirst two characters
on theline, and then aspace (T ‘). The next character is a sscanf formatting character,
which indicates the format of the numbersin the following lines. Thus, if you look at
vect_add\vectorl.vec, which consists of floating point numbers represented in an
exponential form, the formatting character is“E”. Also, an optional number can come
right after the formatting character (no intervening space), to indicate that the number of
bytes required to represent the numbers. Thus we use a'2' for 16-bit and a'4' for 8-bit
numbers. streamCompareFile checks each 8-bit or 16-bit values.to the correct length.

You may find that the output file generated by streamSaveFile has more than one col-
umn. In such cases, thefileisread row-wise, i.efirst we read the entries (going from left
to right) in the the first row and then the second row and so on.

12

March 10, 2002

Beginner’s guide to Imagine Application Programming

2.4

Simulator script (.sim file)

Thelast thing we need to write is a simulator script to exercise the program. This script
consists of a series of commands to the simulator. A good analogy is:

csh shell : shell scripts :: isim simulator : .sim files

So, instead of typing all the commandsin the shell, a.sim file can be written. A script
usually loads some test data into the main memory, calls the kernel, and then stores the
result to disk for examination. The script for our example is shown below. The com-
mands are indicated by "isim>" prompt, the explanations are preceded by “//’, while
isim's response are preceded by "> ". Note that we haven’t yet learned how to open the
shell, but the explanations here have been included to make things easier to understand.

isim>tim
Il Instantiates an Imagine simulated processor
isim> p /Zit/im/

/I Thisisthe 'prefix' command. Since all pieces of the Imagine simulator are instanti-
ated as modulesin a hierarchical manner, the “p” command is used to navigate to
different levels of the heirarchy. "/it/im" is, in some sense, the "root directory” of the
Imagine processor, which we're simulating. isim responds to the ‘ prefix’ command
with:

> prefix: Zit/im/

isim> read txt ./ms/data "vect_add\vectorl.vec" 0x0000
> Read 8 values.

isim> read txt ./ms/data "vect_add\vector2.vec" 0x0020

> Read 8 values.

I/l Read in the stream of vectorsinto memory at memory address 0x0000 and 0x0020
respectively. The input file with our data set isin text format ("txt") anditisin
source file "vect_add\vectorl.vec" and "vect_add\vector2.vec" respectively (files
are accessed relative to the current working directory). The length of theread is
determined by the length of the source file, and the simulator responds to the read
command with the length read. The readsinitialize Imagine memory, the destination
for these input data set being our memory system's data (*./ms/data’").

NOTE: When the Stream Scheduler encounters a streamL oadFile it doesn't do any
host transfers, rather just looks up the address of theinitialized data based on the file
name.

NOTE: If we had not called "p /it/im" earlier, the read command would have had to
look like this:

isim> read txt im/it/ms/data "vect_add\vector2.vec" 0x0020

March 10, 2002 13

Beginner’s guide to Imagine Application Programming

2.5

/I Now we run our vadd kernel:

isim> run vect_add ../hp "doExample"

// "vadd" names akernel instance, which in turn mapsto the kernel we called "vadd"
defined in vect_add kc.cpp. The kernel will run on the host processor ("../hp", or
dternatively, "/im/hp") and take arguments "doExample". Then we kick off the ker-
nel with:

isim>go
>[1] Imagine Starting

> ..

/I"go" runsthe kernel to completion; it prints out progress messages, and by default
the smulator printsits cycle number every 10000 cycles (Use"go" with an argument
to change that, try “help”).

/I Finally, if there are errors they'd be contained in the error printlog:

isim> printlog error

/I At the end we quit ISIM.
isim> q

NOTE: Details on theindividual commands can be obtained by typing "help" or "help
<command>" at the ISIM command line.

Debugging applications and extracting useful statistics

I Sim is actually a cycle accurate simulator, and hence can be used to gather perfor-
mance results. For debugging purpose, debug_info allows the programmer to look at
theregister state within isim. Like other modules, debug_info can be viewed using the
"d" (display) command in isim. There are two types of debug_info modules. Each
cluster has adebug_info module of its own that stores register state in that module.
The cluster array also has an "umbrella® module that has pointers to each of the cluster
modules. For details on debug_info, please refer to section 8.3 in ips_user.pdf.

In order to retrieve useful statistics, stats allows usto get instruction counts and per-
centages on a per-function-unit basis. It has the same structure as debug_info; it'sa
module, and displaying it shows the stats it's compiled. Like debug_info, it can be
printed from one of two places: in the cluster from an umbrella module (each cluster
will work, but they should all be the same) or from a functional unit. For details on
stats, please refer to section 8.4 in ips_user.pdf.

I will have an example to explain both in the next version.

14

March 10, 2002

Beginner’s guide to Imagine Application Programming

3.0

Integrating a Program Into the Simulator

Now that we have the various program modul es implemented, we must integrate them
into the simulator before we actually attempt to execute them.

1. Makeadirectory under <your working dir>\im_apps\ <your application>, eg.
D:\working\im_apps\vect_add

2. Make sure that the input files (to be loaded into streams) and the files for stream
comparisions are in the correct directory.

3. Addthefollowing to your system path (using Settings > Control Panel > Sys-
tem):
<your working dir>\tools\isim\isimexe\Release
<your working dir>\tools\isim\isimexe\Debug

4. Follow the directions given in section 2.2 of ips_user.pdf under the heading 'Cre-
ating a project’. The last step can be skipped by instead copying the main.cpp file,
sinceit is the same for every application. Make sure the rest of the source files are
added into the project.

5. Build the project by specifying working directory (project settings) as <your
working dir>\im_apps and generate <name>.exe. In the example taken, it is
vect_add.exe.

6. iscd (KernelC compiler) compiles <name>_kc.cpp filesto produce
<name>_kc.uc files, the microcode that can be executed by Imagine (simulated by
isim). The command to generate <name>_kc.uc fileis:

iscd -m gold8.md <name>_kc.cpp
which in the example taken will look as follows:
iscd -m gold8.md vect_add\vect_add_kc.cpp

Note that you need to be in the directory <your working dir>\im_apps to run
iscd. If you are using scd.bat, you also need to append the -pre flag to support pre-
processing, as follows:

./scd.bat —i vect_add_kc.cpp -pre

This generates the following files:- vect_add_kc.uc, vect_add_kc.i and
vect_add_kc.viz, which are the microcode, the intermediate file (inline C source
code) and the visualization file respectively. Use the following comamand to view
the .vizfile:

i:\tools\schedviz.exe

7. iscd and isim requires a machine description file as an argument to run an applica
tion. The -m argument specifies the machine that we're compiling the microcode for.
The application programmer doesn't have to worry about the contents of the machine
description file, with the one exception of knowing the number of clusters on the
machine, which is necessary for correctly handling interleaving. 'gold8.md" isthe
required machine description file, which is a description of the entire Imagine
machine - what functional units there are, what functions they run, how long func-
tions take, how big the SRF is, the speed of the memory, al the latencies between
units, etc. (open and read to find more details). Add the machine description filein
program arguments (project settings) in the given format:

-m gold8.md

March 10, 2002 15

Beginner’s guide to Imagine Application Programming

8.

If you try to run <name>.exe now, a shell opens with the following prompt:
[x]ism>

Here, x denotes the current simulation time. Now type help to get the list of all com-
mands. You can type “help <commandname>" for more specific info. Use them in
accordance with need of application. Since we have aready decided on the com-
mands we are interested in the .sim file, we add this in the program argumnets. The
program arguments (in project settings) will now look as:

—m gold8.md —s <name of file>.sim
Now run <name>.exe, which in our example will be vect_add\vect_add.exe.

Another way to achieve al thisisto not include the program arguments, but use the
foolowing command:

<name>.exe -m gold8.md —s <name of file>.sim

10. Read thisonly if you need to use Source Safe. After verifying that the simulator still

compiles and doesn't crash when executed, we should use Source Safe to integrate
our changes. Thiswill both allow others in the group to share in the fruits of our
labor and preserve our changes for later use:

Add the vect_add directory to theim_apps directory in Source Safe. This operation
isnot entirely intuitive. First, select theim_apps directory. Next, choose "Add Files'
from the File menu. Use the directory navigation bar on theright of the dialog box to
open the vect_add folder. You should now seethefilesit containsin the left partition
of the dialog box. Finally, click on the Add button to compl ete the operation. You
should now see the vect_add folder in Source Safe. Note that you should not include
the output files (eg. .uc, .i, .viz, .opt etc.) since they become read-only files now and
hence if the program isrun again, it may fail to generate these output files.

16

March 10, 2002

Beginner’s guide to Imagine Application Programming

4.0

Additional Topics

NewStreamData restrictions. The size argument to new streamData must be a con-
stant, and data-dependent control flow cannot be used to allocate more than one chunk
of stream data at the same time. The following are not legal:

1. im_stream<Fo0> out = newStreamData(in.getL ength());
2. im_stream<Foo> g[100];
for_VARIABLE(inti=0;..){
a[i] = newStreamData(10);

}

Data-dependent streams. Data-dependent streams involve noting stream derivations
for which the start and/or end values, which change depending on data. Thisis done
using the data dependence field, where one puts "true” for avariable length stream, and
some combination of the following flags:

im_var_size: The start isfixed and the end is data dependent but known when the stream
isderived. This requires the stream to be aderived stream.

im_var_countup: The start is fixed and the end is data dependent, determined by the
number of output elements produced by a stream operation. Note that it still needs an
upper bound on its length.

im_var_pos:Both the start and end are data dependent.

im_var_align: Used in combination with im_var_pos, but it is assumed that the start is
aways divisible by SRF block sizes.

im_var_cover:Used in combination with im_var_pos, when awrite or read is treated as
an access to the entire stream.

The following examples illustrate the use of the mentioned flags:

1. Variable size streams are used most often to contain the output of kernel that con-
sumes a stream with a data-dependent number of elements and produces the same
number of elements. Since the size of the output is known, we can derive the output
stream using im var_size asfollows:

im_stream<Foo> out_data = newStreamData<Fo0>(100);
im_stream<Foo> out = out_data(0, in.getLength(), im_var_size);
myKernel(in, out);

2. Countup (or variable length) streams are used whenever the end varies depending on
the number of elements produced by a stream operation. Note that all countup
streams are inherently variable size streams. Taking the previous example, if we now
consider a case when the kernel doesn't produce the same number of elements asthe
stream it consumes, the data-dependent nature of the input stream needs the output
stream to be derived with im_var_countup:

March 10, 2002 17

Beginner’s guide to Imagine Application Programming

im_stream<Fo0> out = newStreamData<Foo>(maxFoo, im_countup);
myKernel(in, out);

Note that maxFoo was specified to provide upper bound on the stream length.

3. A variable position stream is used whenever the start varies, most often to iterate
over parts of a stream with data-dependent length or do some sort of lookup into a
particular stream:

im_stream<Foo> out = newStreamData<Foo>(maxFoo);
for_VARIABLE(i = 0; i < in.getLength(); i+= 32) {
im_stream<Foo> inlter = in(i, max(i + 32, in.getLength()),
im_var_pos | im_var_align | im_var_cover);
im_stream<Foo> outlter = out(i, max(i + 32, in.getLength()),
im_var_pos | im_var_align | im_var_cover);
myKernel(inlter, outlter)

}

In the case of this example, theim_var_align flag can be used because the start is
always divisible by the SRF block size of 32. Thisflag isimportant for good perfor-
mance because it allows multiple variable position accesses to the same buffer in the
SRF.

Further, theim_var_cover flag can be used because the |oop accesses the entire
stream even though each iteration does not. Hence, if the stream out can fit in the
SRF then a use of out after the loop does not need to load any of the stream from
memory.

Data-dependent control flow: Marking data-dependent control flow requiresreplacing
if with if VARIABLE (note that else is not supported) and while or for with
while_VARIABLE or for_ VARIABLE, if the condition is data-dependent. For exam-
ple

while_VARIABLE(a.getLength() > 0) {

= A stream with a derivation that varies between iterations of a data-dependent (but
not afixed) loop is aso data-dependent. For example:

for_VARIABLE(i = 0; i < a.getLength() ; i+=100) {
im_stream<Foo>b =a(i * 100, i * 100 + 100, im_var_pos);

= Datadependent streams and control-flow are the only data-dependent variations
allowed in aprofile. In particular, the following is not legal:

im_stream<Fo0> b = newStreamData(100);

18

March 10, 2002

Beginner’s guide to Imagine Application Programming

im_stream<Fo0> ¢ = newStreamData(1000);
kernelFoo(a, a.getLength() > 100 ? ¢ : b);

= Butthisis:

im_stream<Foo> b = newStreamData(100);

im_stream<Foo> ¢ = newStreamData(1000);

if VARIABLE(a.getLength() <= 100) {
kernelFoo(a, b);

}

if VARIABLE(a.getLength() > 100) {

kernelFoo(a, c);

}

Using type qualifier DOUBLE: We are all aware of the fact that data types have their
own size limitations. Hence an int data type can’t be always used to store the result
of amultiplication of two variables of int data types. DOUBL E<type> isatype
qualifier that can be used to achieve the same. It allows the user to concatenate two
instances of the qualified type, and then access any of the high word or low word,
using HI and L O respectively. Taking an example, let a and b are the two multiplica-
tive operands and we are interested in storing the low word of theresult in ¢, all of
which are of datatypeint. This can be achieved as follows:

DOUBLE<int> d;
d=a*b;
c=L0(d);

March 10, 2002 19

Beginner’s guide to Imagine Application Programming

5.0

A more involved example: fft

Let us now try to implement the radix-2, perfect shuffle, decimation in frequency butter-
fly agorithm in our kernels. For the forward fft, an input stream of ordered elementsis
taken asinput and the output stream produced is in bit-reversed order. The fft for a N-
input stream can be considered to be aresult of log2(N) butterfly stages, where each
stage does N/2 butterfly operations and the index of inputs to each butterfly gets shuf-
fled between successive stages. The operation of asingle stageisillustrated below for a
8-element stream.

0 um))
04 | Buteflydwd | o

1 anP
il

2 15| Buteflyl(wl) dffl dffo

3 ar Siffle dff2
— 26 | Butafly2w?) an?

4 dff2 uml

5 a3
37| Buteflyawd | anB

6 dff3 dffl

7 dff3

Wefirst divide, or cut, the input stream into 2 stacks, feed them into the 4 butterflies and
then then shuffle them to create the correct fft stage pairings. The output of this stage
will be fed to the next stage, which will perform the same operation. After log,(N) such
stages, we would achieve our desired fft output. This scenario can easily be incorpo-
rated in Imagine, where the kernel performs 8 butterfly operations in each stage, one
each in acluster. The shuffling operation can be achieved by taking advantage of inter-
cluster communication. Though the butterfly and shuffling operation remains the same
at every stage, the inputs and twiddle factors change. Note that the inputs to a stage are
the results of the previous stage and hence pose no problem. However, we need the
stream of twiddle factors to provide the correct factors to each cluster as the stages
change.

The header file for fft_new:

#i nclude "idb_types. hpp"
#i ncl ude "idb_deftypes. hpp"
record conpl ex {

float r;

float i;

20

March 10, 2002

Beginner’s guide to Imagine Application Programming

}

kernel fft8c(istreankconplex> in_a, istreanxconplex> in_b,
i streanxconpl ex> in_w,
uc<i nt>& uc_stage_num uc<int>& uc_tw_idx_inc,
ost reankconpl ex> out);

KERNELDECL (f ft 8c)

#define fft8c KERNELCALL(fft8c)

#i ncl ude "i db_undeftypes. hpp"

#endi f

The streamC file, named fft_new_sc.cpp.

#i nclude "i db_streant. hpp"
/lshared files

#i ncl ude "fft_new hpp"
STREAMPROG(f ft _new)

unsi gned int |og2(unsigned int x){

unsigned int i = 0;

X >>= 1;

while(x) { x >>=1; ++i; }
return i;

}

void fft_new(StreanSchedul erlnterface& scd, String args){
/1 load twi ddl e factors
i mstreancconpl ex> twi ddl e_factors =
newsSt r eanDat a<conpl ex>(344, i m_count up);
/ /i mstreanxconpl ex> tw ddl e_factors;
streantLoadFil e("fft_new tw ddl e8c1024. vfft", "txt", "",
twi ddl e_factors);
/1 load input data
i mstreankconpl ex> data_in =
newsSt r eanDat a<conpl ex>(1024, i m count up) ;
/1imstrean<conpl ex> data_in;
streantLoadFil e("fft_new input.vfft", "txt", "", data_in);
/] conmpute sonme useful val ues
int len = data_in.getLength();

int half _len =1len/ 2;
int pow2_len = 1o0g2(len);
cout << "***** | en =" << |en << endl;

cout << "***** haglf |en << half_len << endl;

cout << "***** pow? | en " << pow2_l en << endl;

/1 decl are data out put

March 10, 2002

Beginner’s guide to Imagine Application Programming

i m streanxconpl ex> data_out;
/1 1oop
int i;
int tw.inc = 1;
imuc<imint> uc_i;
imuc<imint> uc_tw.inc;
for (i =0; i < pow2_len; i++){
/1 output goes sonewhere new
dat a_out = newSt reanDat a<conpl ex>(1en);
uc_i =i ;
uc_tw_inc=tw_inc;
/1 call kernel
fft8c(data_in(0, half_len), data_in(half_len, |en),
twi ddl e_factors, uc_i, uc_tw.nc,
data_out (0, len, imacc_stride));
/1 output becormes next input
data_in = data_out;
twinc =twinc * (i <4?21: 2);
}
/'l save and verify final output data
i mstrean<conpl ex> fin_out = data_out(0, len, imfixed,

i macc_bit_reverse);
streanBaveFil e("fft_new output.vfft", "txt", "E", fin_out);

streanConpareFile("fft_new bitrev.vfft", fin_out,
0. 005f, "a");
}

One needs to ensure that the size passed to newStreamData is constant, thereby requir-
ing to know the number of elementsin the files, to be used in streamL oadFile. For
example, there are 668 twiddle factors in the file twiddleBc1024.vfft and hence the size
of the stream twiddle_factors should be made 668 during stream declaration.

Also, thereis aprovision for specifying loop unrolling and number of pipelined stages.
Both these quantities have been taken as 1 in the fft_new_kc.cpp (kernelC file for
fft_new, which can be found in im_apps/fft_new) to make matters simpler. Thefile

has not been shown because of its sheer size.

Taking our example, the fft8¢1024.sim file will look as following:-
tim
p/it/im/
read txt ./ms/data "fft_new/twiddle8c1024.vfft" 0x0
read txt ./ms/data "fft_new/input.vfft" 0x0
run fft_new ../hp "8c 1024"
go

22

March 10, 2002

Beginner’s guide to Imagine Application Programming

vemp ./ms/data "fft_new/bitrev.vfft" 0x2800 0.005
printlog error

There are 10 stages in our scenario since there are 1024 elements (10g,1024=10).

Thisiswhy the loop in streamC file runs for 10 iterations, calling the kernel to per-
form the computation required in the current stage i (also passed to kernel). Each
stage takes 2 input streams of 512 elements each, thus requiring 512 twiddle factors
for the same number of butterflies computed. The twiddle factors required in each
stage are as follows:-

1st -> WOt w2 wBwtwB B w’ wé....... weLt

2nd -> WO O w2 WP wrwrwB B we...... wPLo

3rd -> WO WO O P wA W wAwA we....... wo08

ath -> WP el WO O PP P wA. ... WP

5th -> wP(16 times),w'8(16 times),w3%(16 times),.......,w*?%(16 times)

6th -> wO(32 times),w3(32 times) w?4(32 times),,w*3(32 times)

7th -> w0(64 times),wb4(64 times), w2864 times)......., w**8(64 times)

8th -> w°(128 times),w?8(128 times) w?>%(128 times),.......,w3*(128 times)
oth -> wO(256 times),w?>%(256 times)

10th -> WO(512 times)

Instead of loading a different stream of twiddle factorsin each stage, we use the
same stream of twiddle factors. Moreover, we don’t load all the 512 required twiddle
factors; instead interpolate the required factors from the given/loaded values. The
stream of twiddle factors are divided into 3 categories, one following the other (can
be verified by looking into twiddle8c1024.vfft). They are shown below, seperated
ni groups of 8, to illustrate the values used by each of the 8 clusters:

32 x 8 entries: wO(8 times), w8(8 times), w3?(8 times)........, w*?%(8 times)
These areread into twiddle real and twiddle_imag in the kernel.

10 x 8 entries:;

1st stage -> W2 wh w2 w3 wA wP wl w’

2nd stage -> WO WP w2 w2 WA wt wo wP
3rd stage -> W2 Wl wO P wA whwA wh
4th stage -> wWo w2 w2 P P P wl P
5th stage -> WO WP wo w2 wlwl wPwP
6th stage -> WO WP Wl w2l P wP
7th stage -> WO w2 wOwPwP P wP wP
8th stage -> WO WP Wl w2 PP wPwP
oth stage -> WO WP Wl w2l wP P wP

March 10, 2002 23

Beginner’s guide to Imagine Application Programming

10th stage -> WO, w2 WP wPwOwPwP

These are read into rotate real and rotate_imag in the kernel.

8 entries: w8 w8 w8 w8 w8 w8 whwd

Thisisread into interp_rotate in the kernel.

Let us now look at how the twiddle factors are generated at each stage. As can be
seen clearly, therotate real and rotate imag twiddle factors reflect the base twiddle
factorsrequired in each stage. We only have to multiply these with the right factor to
generate all the twiddle factors required in a stage. Thisis achieved by using

twiddle real and twiddle_imag. The point to note isthat thereisno w8 there. Thisis
achieved by using interp_rotate. So, to summarize, the twiddle factors used are gen-
erated iteratively asfollows (real and imag have not been explicitly shown):
twiddle * rotate : 0-7, 16-23,.....,496-503th twiddl e factors

twiddle * interp_rotate * rotate: 8-15, 24-31,....,504-511th twiddle factors

However, you can see that there are 2 problemsin using this expression. First, wBis
not required after the 4th stage. To achieve this, the kernel usesinterp, whichis
interp_rotatefor thefirst 4 stages, and is 1 for the rest of the stages. Thus, the second
expression istwiddle * interp * rotate.

Secondly, we cannot simply use twiddle after the 4th stage because we don’t need all
the twiddle entries. While the 5th stage requires all entries, the 6th stage requires
every aternate entry (W°,w32w® and so on), the 7th stage requires every 4th entry
(WO w8 and so on) and so on. Thisindexing is a geometric progression. For
this reason, the kernel introduces 2 new flags: tw_idx and tw_idx_inc. The streamC
program performs the geometric progression and passes on the current index to the
kernel. Thus, if welook at tw_inc in the streamC code at each stage, they are found
to take the following values in each iteration (stage):

1st->1 2nd-> 1 3rd-> 1 4th-> 1 (immateria in first 4 stages)
5th -> 20

6th -> 21

7th -> 22

gth-> 23

oth -> 2

10th -> 2°

The other interesting thing in the kernel is the shuffle part. Note that the output gen-
erated by the butterflies at each stage will be ordered in a bit-reversed manner. But
since we are feeding the same output to the kernel asthe next input, we need to make
sure that the output is not in the bit-reversed order. Thisistaken care of by inter-
cluster communication in the kernel, using commucperm. However, we want the
final output (last stage) to be in bit-reversed order. Thisistaken care of by the
streamC, using im_acc_hit_reverse to derive the fina stream.

March 10, 2002

Beginner’s guide to Imagine Application Programming

IScd and IDebug

As mentioned earlier, I Scd, the kernel scheduler, is used to compile kernels for execu-
tion on the Imagine processor. All kernels must be compiled before using the functional
simulator, IDebug, to create a profile, or using the cycle-accurate simulator. When we
run iscd, it displays which scheduling pass it is executing, a progress indicator when
actually scheduling operations, and other important information directly to the com-
mand line. In order to get details about the argumentsiscd uses and the various informa-
tion it displays during the scheduling pass, it is highly recommended to refer to section
5 of ips_user.pdf.

I Debug isafunctional simulator built into isimhost.dll and isimcore.dll. It includesa
set of classes and functions that allow the direct execution of a stream application with-
out simulated or actual Imagine hardware, i.e even without scheduling kernels. It can be
used in conjunction with adebugger such asthat built into Visual C++ to debug a stream
application. All of the conventional debugging tools can be used: breakpoints, single-
stepping instructions, watches, stack traces, etc. This definately motivates oneto learn
more about using |Debug, which can be found in section 7 of ips_user.pdf.

Compile-time

StreamC KernelC
C++ compiler

Run-time

application.exe

Debugger

March 10, 2002 25

	1.0 Overview
	1.1 Imagine
	1.2 Imagine programming model and tools
	1. Kernel scheduler (iscd): Single-phase VLIW scheduler, which is optimized for individual kernel...
	2. Stream scheduler (istream): Converts StreamC functions into Imagine operations. It determines ...
	3. Schedule visualizer (schedviz): Used for application and kernel visualization. Enables one to ...
	4. Interactive debugger (idebug): Provides debug functionality for program development. This only...
	1.2.1 Getting the Most Recent tools (and other files)
	1.2.2 Using Visual C++ to Compile the Tools
	1. Open tools.dsw file using Visual C++ by going to <your working dir>\tools (eg. D:\working\tool...
	2. We need to build the following projects: isimdll, isimhostdll, isimexe and iscd. Let us first ...
	3. Now, we build the projects in the following order: isimcore.dll > isimhost.dll > isim.exe (due...

	2.0 Writing application (vector addition used as example)
	1. Write a shared header file declaring the records that need to be used and the kernel declarati...
	2. Write a StreamC program to implement everything except the computationally intensive portion o...
	3. Write the kernel in kernelC to carry out the actual computation (the algorithm).
	4. Write a simulator script to load test data into memory and store the final result to disk.
	2.1 Shared header file
	2.2 streamC program
	2.3 kernelC program
	TABLE 1. Non-Interleaved Stream Layout
	TABLE 2. Interleaved Stream Layout

	2.4 Simulator script (.sim file)
	2.5 Debugging applications and extracting useful statistics

	3.0 Integrating a Program Into the Simulator
	1. Make a directory under <your working dir>\im_apps\ <your application>, eg. D:\working\im_apps\...
	2. Make sure that the input files (to be loaded into streams) and the files for stream comparisio...
	3. Add the following to your system path (using Settings > Control Panel > System):
	4. Follow the directions given in section 2.2 of ips_user.pdf under the heading 'Creating a proje...
	5. Build the project by specifying working directory (project settings) as <your working dir>\im_...
	6. iscd (KernelC compiler) compiles <name>_kc.cpp files to produce <name>_kc.uc files, the microc...
	7. iscd and isim requires a machine description file as an argument to run an application. The -m...
	8. If you try to run <name>.exe now, a shell opens with the following prompt:
	9. Now run <name>.exe, which in our example will be vect_add\vect_add.exe.
	10. Read this only if you need to use Source Safe. After verifying that the simulator still compi...

	4.0 Additional Topics
	NewStreamData restrictions:
	1. im_stream<Foo> out = newStreamData(in.getLength());
	2. im_stream<Foo> a[100];

	Data-dependent streams:
	1. Variable size streams are used most often to contain the output of kernel that consumes a stre...
	2. Countup (or variable length) streams are used whenever the end varies depending on the number ...
	3. A variable position stream is used whenever the start varies, most often to iterate over parts...

	Data-dependent control flow:
	Using type qualifier DOUBLE:

	5.0 A more involved example: fft
	6.0 IScd and IDebug

