
EE482: Advanced Computer Organization Lecture #11
Processor Architecture
Stanford University Wednesday, 31 May 2000

ILP Execution

Lecture #11: Wednesday, 3 May 2000
Lecturer: Ben Serebrin
Scribe: Dean Liu

In this lecture, we discussed four papers:

1. D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The IBM System/360
Model 91: Machine Philosophy and Instruction-Handling,” IBM J. Re-
search and Development 11:1, January 1967.

2. S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-Effective Super-
scalar Processors,” in Proceedings of the 24th International Symposium on Com-
puter Architecture, June 1997.

3. J. E. Smith and A. R. Pleszkun, “Implementation of Precise Interrupts in
Pipelined Processors,” in Proceedings of the 12th International Symposium on
Computer Architecture, June 1985.

4. L. Gwennap, “VLIW: The Wave of the Future? Processor Design Style
Could Be Faster, Cheaper Than RISC,” Microprocessor Report, Vol. 8 No.2,
February 14, 1994.

1 IBM System/360 Model 91 [1]

The goal of the design was to achieve a 10x performance improvement over previous Sys-
tem/360 architecture. However, the improvement in circuit technology could only bring
a four fold performance gain. So, they needed other advances in the microarchitecture
to capture the rest of the gain needed to meet the performance goal.
The technology of choice for the 360/91 was ASLT which were discrete transistors.

The design was probably on the order of 10,000-100,000 transistors using hybred inte-
grated circuits with soldered logic module on the PCB.
The target clock frequency was 16 MHz. In comparison, the memory access latency

was only a few cycles. As a result, there was no need to have caches. On a side note,
the Model 85 was the first machine with a cache. It had a simpler pipeline and had the
same performance as the Model 91.
With the aggressive microarchitecture, the IBM 360/91 achieved 0.5 IPC when con-

temporary machines of that time were about 0.1 IPC. Note the instruction words had



2 EE482: Lecture #11

Figure 1: Reproduction of Fig 3. in The IBM System/360 Model 91: Machine Philosophy
and Instruction-Handling.

variable lengths, so each machine instruction was equivalent to about three RISC instruc-
tions.
Figure 1 is a reproduction of the third figure in the paper which shows the pipeline

diagram. First of all, the Model 91 was a memory-to-memory machine. We can also see
that this machine had a long pipeline and experiences the standard pipeline problems
such as control and data dependencies, and large branch penalty. Other microarchitecture
features included 2-stage execute, some out of order execution, single instruction issue,
and the inclusion of a loop buffer. There were forwarding paths to the reservation stations
because out of order execution might cause registers to be reallocated. As a result, the
instruction could not write back to the register. The 360 also only supported imprecise
interrupts, except in some very limited cases.
The 360/91 employed prefetching fall through as the branching strategy. This reduced

the penalty of a mispredict. In addtion, the machine used the loop buffer to store eight
double word instructions of a short loop. The hareware checked whether there was a
backward branch to within the past eight instructions. If so, the instruction unit entered
into the “loop mode,” and began to fetch instructions from the loop buffer.
Many of the common architectural features found in today’s microprocessor can be

seen in this machine. For example, today’s data cache, reservation stations, and non-
blocking store/load are respectively called ”operand buffer,” ”operation buffer,” and ”ad-
dress buffering” in the 360. Althogh in this paper they ”operation buffer” the term
reservation station comes from the same work.
With the advances in VLSI technology, microprocessors today incorporate many of

the ideas that appeared in the mainframes in the ’60s. The main differences between
machines in the ’60s and today are:

• Machines then did not worry about delay to main memory

• Machines then used core memory. In 1978, VAX was the first to use solid state
memory. And solid state memory was not popular until the ’80s.

• Machines today are very concerned about memory latency, so a lot of effort has
been put into changing the memory architecture.



EE482: Lecture #11 3

2 Complexity-Effective Superscaler Processors [2]

This paper defines the term Complexity-Effectiveness as ”delay of the critical path through
a piece of logic and the longest critical path through any of the pipeline stages determines
the clock cycle.” In layman’s term, this means superscaler with faster clock cycle.
Although the introduction section of the paper emphasizes on how wire delay is

becoming an important factor in path delay, wire delay is not explicitely taken into
account.
Palacharla describes two ways to implement the renaming logic: RAM and CAM. The

table size of RAM is equal to the number of logical registers. The RAM table mapping is
done by indexing into the entry corresponding to the logical register to find the matching
physical register. In contrast, the table size of CAM is equal to the number of physical
registers. The CAM table mapping is done by broadcasting the logical registers and
find out which physical register matches the logical register. In comparison, the RAM
organization is more scalable since the number of architectrual registers is fixed for a
given ISA. In this design, the delay is dominated by logic, so as the process scales the
delay decreases linearly.
The delay of the wakeup logic is impacted by the issue width. Although there is some

wire delay in the path, the quadratic term is quite small. Similarly, most of the delay of
the select logic is also in the gates because the tree orientation of the logic structure.
In contrast to the other blocks, bypass logic has a lot of wires accross all functional

units so the wire RC is the dominant factor in the overall delay. Assuming that the
lengths of the functional units scale with the technology then the delay of the wires stays
constant in seconds. This means that relative to gate delay, the wire delay is increasing.
Bypass in an 8 issue machine in the 0.18um technology dominates cycle time. When you
need it, you can’t hide it.
From the analysis of the bypass logic, we see that the bottleneck in the overall per-

formance is the communication between units. The solution is to reduce this global com-
munication which leads to the alternative layout proposed in this paper. By clustering
the functional units and registers and exploiting the dependencies between instructions,
the data dependency between clusters is decreased resulting in reduced global communi-
cation. This is done by issuing dependent instructions to FIFO buffers associated with
the different clusters. Thus, each cluster proceses a stream of instructions that pass
values mostly upstream, utilizing the efficient intra-cluster communication and keeping
inter-cluster communication to a minimum. The results from each cluster no long need
to be broadcasted to all entries, but rather only to the head of these queues.
The key part of this clustering idea is the steering logic that steers the instruc-

tions into the different queues. Palacharla uses an heuristic to determine which FIFO
receives the instructions. The heuristic, based on the availability of the operands to the
instructions, is shown below:

1. If all the operands to instruction I are computed and are in the register file, steer
I into a new FIFO.



4 EE482: Lecture #11

2. I has one outstanding operand produced by Isource in FIFO Fa. If there is no
instruction behind Isource, steer I into Fa, else steer it into a new FIFO.

3. I requires two outstanding operands producing from Ileft and Iright from Fa and
Fb, respectively. Apply rule 2 above to Fa. If the resulting FIFO is full or there is
an instruction behind Ileft, then apply rule 2 to Fb.

Using the dependence clustering degrades the overall performance by about 5-8%.
Palacharla suggests that this lost in performance can be made up by increasing the clock
frequency.
Besides the Dispatch Driven steering logic mentioned above, Palacharla discusses

three other clustered microarchitectures:

1. Single Window, Execution-Driven Steering: This scheme uses one issue window and
issues the instruction to the cluster which can provide the source value first.

2. Two Windows, Dispatch-Driven Steering: This scheme is similar to the heuristic
discussed previously, except this scheme uses a flexible window instead of a FIFO.

3. Two Windows, Random Steering: This scheme uses the same structure as the Two
Windows, Dispatch-Driven Steering, except that the steering of instructions into
the cluster is done randomly.

Overall, all of these clustering techniques, except Random Steering, perform about
the same with similar IPCs. Random Steering’s worse performance can be attributed to
the frequent communication between clusters.
The idea of clustering is being adopted by commercial microprocessors. The Alpha

21264 uses a similar clustering with Single Window, Execution-Driven Steering in its
chip.

3 Precise Interrupts [3]

The difference between precise and imprecise interrupts is that with precise interrupts,
the interrupts appear the same as in a single-issue, in-order machine. In comparison,
the M-Machine has concurrent interrupts: the thread that causes the exception stores its
state and other threads keeps going. The term ”interrupt” and ”exception” often have
different meanings to different people; therefore, Prof. Dally suggets to use the term
”event” instead.
Precise interrupts are important because you need to fix what you did. External

interrupts are trivial because you can just stop sending the instruction to the execute
unit. So the paper focuses on the internal interrupts.
The paper suggests a few ways to implement precise interrupts in an out of order

machine.



EE482: Lecture #11 5

1. Result Shift Register:

• reserve the results bus / reservation vectors

• force completion in order

• all functional units have fixed latency

2. Reorder Buffer:

• put out of order result into reorder buffer which is in program order

• if ”ready”, then check whether an exception has occured. If okay, then commit

• other instruction may wait for the result in the reorder buffer

3. History Buffer:

• put old value into history buffer

• if exception, place value in history buffer back to registers (in order)

• the disadvantage is that there is only one result bus, so it takes one cycle per
entry to restore from the history buffer. Thankfully, interrupts do not happen
frequently

• the register file has three ports

4. Future File:

• two register files:

(a) architecture file which is in sequence and is maintained by the reorder
buffer

(b) future file which is used by the execute unit

• on exception, dump the content of the architecture file into the future file

Smith suggests that it is okay to pollute the cache as long as the memory is not
touched. This is counter intuitive since a polluted cache cannot hide the memory latency
which defeats the purpose of having a cache.
This paper is considered to be one of ”The” paper on renaming because it is one of

the first paper paper to talk about getting a new physical register for each write.

4 VLIW [4]

A short comparison of the three architectures are as follows:

• CISC – variable length instructions

• RISC – fixed length instructions, register-to-register instructions



6 EE482: Lecture #11

• VLIW – puts many instructions into one instruction, exposes hardware to the
compiler, and lets it do the scheduling

The VLIW exposes the hardware to the compiler and lets it statically schedule the
instructions to exploit the ILP. Trace scheduling is a very powerful compiling technology
and many companies license it from Muliflow because the same technology can be applied
not only to schedule VLIW machines, but superscaler machines as well. Since the VLIW
machines are heavily dependent on the quality of the compilers, it is necessary to overcome
the complixity in the compiler in order to make VLIW viable.
The biggest problem with VLIW machines is binary compatibility. As technology

advances, changes to the hardware such as increasing the functional units may result in
the inability to run legacy code. One solution to the binary compatibility problem is to
use a translator and to compile the code down to microcode and distribute the microcode
only.
Another potential problem with VLIW architectures is running out of ILP in the

executing thread. Although superscaler machines face similar problem, VLIW machines
are mostly depending on the compilers to find the ILP in the static instructions and may
miss some of the ILP found in the dynamic instructions.


