EE482: Advanced Computer Organization Lecture #10
Processor Architecture
Stanford University Wednesday, 31 May 2000

Value Prediction

Lecture #10: Monday, 1st May 2000

Lecturer: Mahesh Madhav
Scribe: Anamaya Sullerey
Reviewer: Mattan Erez

1 Introduction

Data dependencies in execution are one of the main hurdles in extracting parallelism out
of sequential programs. One possible approach followed to overcome this dependency
bottleneck is speculation. In the context of data this speculation can be in two respects.
One can speculate on the address of the data, and on the value of the data. In this
session we discussed following three papers.

e An Architectural Alternative to Optimization Compilers
e Exceeding the Dataflow Limit via Value prediction

e An empirical analysis of instruction repetition

2 An architectural alternative to optimization com-
pilers [1]

This paper concentrates on an architecture that is geared towards identifying common
subexpressions and reusing the previously calculated results. By doing this, the overall
processor speed will increase due to lesser computations and memory traffic.

A common subexpression is part of an expression, appears in multiple expressions,
with the same operand values and results. For example, in the expressions,

X=A+B

Y=A+B+C

’A+B’ is a common subexpression.

Identifying common subexpressions can lead to reuse. It is not possible to determine
all common subexpressions at compile time. This is because not all dependencies can be
determined at compile time. One example is when the input operands to the expression
are pointers.



2 EE482: Lecture #10

Two subexpressions are congruent if they have the same sources. Congruent subex-
pressions are a superset of common subexpressions. If the value of the operands is the
same, then congruent subexpressions are common subexpressions.

The paper suggests a two-operand stack based architecture (called Tree Machine(TM)
architecture). The architecture tries to detect common subexpressions at runtime. The
code in this architecture is arranged like a parse tree.

There are ’phrases’ in the static code. A phrase is a segment of code that is more
like a function and is executed by calling a PUSH operation to the address of the first
instruction of the phrase. In this way potential common subexpressions execute the same
phrase. The last instruction of the phrase is indicated by a bit in the instruction. To
load a data word in the stack, a PUSH operation is used to branch to the address of
the instruction that loads the data onto the stack. This way, any data loaded using the
PUSH operation gets associated with the address of the instruction that loads it. This
property is used later to detect dependencies. This method of loading data is referred to
as executing a data word in the paper.

Results of all phrases are stored in the value cache with their dependency bits. De-
pendency sets are represented by bit vectors of length N. Bit i represents dependencies on
variables whose address is "N modulo i’. Whenever a data word is executed, its address
is used to set a bit in the current phrase’s dependency set.

Before executing any instruction, the value cache is checked for its contents. If a valid
result for the phrase exists in the value cache, it is used directly. Whenever any store
instruction is executed, the address of the instruction is used to invalidate all the entries
that are dependent on the same dependency set that the store belongs to. Each entry
in the value cache maintains explicitly the address ranges on which it is dependent, and
whenever location in that range changes, the entry is invalidated.

There are unnecessary evictions from the value cache. These can occur due to limited
capacity of the value cache, or because there are multiple locations in any of the N
dependency sets. A change to any of the data locations can invalidate a value cache entry,
though it may not be dependent on it. This will depend on the number of dependency
sets, as the number of addresses associated with a dependency set is detemined by the
total number of dependency sets.

For testing, six FORTRAN programs were run using a compiler and emulator for the
TM architecture, and the results were compared against the PDP-10. The results showed
an average of 11% improvement in the code size and 18% improvement in the execution
time. The value cache size was 32 entry, and there was a 80% hit rate in the value cache.

This paper was published in 1982(when MIPS group was doing tower of hanoi) and
hence the benchmarks and the result section of the paper are different from what recent
papers have. It gives some idea of level of sophistication of experiments at that period.
This scheme is not doing speculation of any form, only reuse. Another question came up
was how difficult it would be to pipeline such architecture, or have out of order execution,
but the reason for including this paper was because it was one of the first on this subject.



EE482: Lecture #10 3

3 Exceeding the dataflow limit via value prediction
2]

This paper proposes a mechanism for value prediction. Section two of the paper talks
about a taxonomy of speculative execution. It sets it up in the way shown below. It
was mentioned that there could be more categories, though the discussion on complete
taxonomy was left for later on.

Speculative Execution

Control speculation Data speculation
branch direction (binary) Data location
Branch target (multivalued) Aliased (binary)

Address (multi-valued)

Data value (multi-valued)

Taxonomy of speculative execution

The paper defines value locality as the likelihood of a previously seen value recurring
in a storage location. The scope of the paper limits their study to examine the value
locality of general purpose and floating point registers.

The locality is measured for history depths of one and four. In the case of history
depth of four, the value is matched with one of the previous four values. Locality data
for various SPEC‘92 benchmarks (figure 2 in the paper) showed that for depth one, the
average locality in the benchmarks is about 49% while for the history depth of four this
figure is 61%. Locality on the basis of instruction was also explored (figure 3 in paper).
Locality for an instruction is taken as the predictability of the value that the instruction
writes.

To exploit this locality the authors propose a value prediction unit. It has two parts,
the classification table (CT) and the value prediction table (VPT), and both of them
are indexed with the program counter. The CT figures out whether an old value can be
used. It classifies instructions into predictable and not predictable. It has a bunch of
saturating counters and a valid field. The (VPT) contains the value. It is not clearly
mentioned whether four or one value is stored for history depth of four. If there are four
values, the paper does not clarify how one of them is chosen. Hit rate data (Figure 4)
shows the sensitivity to the size of the VPT. It saturates after VPT has 4K entries.

Various schemes (table 3) with different sizes and counter lengths were used for the
CT. There is no explanation of why those configurations were chosen. Results (Figure 6)



4 EE482: Lecture #10

show the hit rates for these configurations. The graphs crisscross and do not give clear
insight into pros and cons of various CT configurations. The configuration having a two
bit counter, with 1024 entries in the CT gave the best performance.

A penalty occurs when there is misprediction while speculatively executing an in-
struction. Since the instruction is in the reservation station, it takes an extra cycle to
reissue it. Also, there is extra penalty due to resource usage by the instruction.

Experiments were done to show speedups for three different architectures, PPC620
with a maximum of 16 instructions in flight at a time, PPC620+ with a maximum of 32
instructions in flight at any time, and PPC620+ with any number of instructions in flight
at a time. The average speedups were about 5%, 7%, and 27% respectively (figures 9,
10, and 11 in the paper). The last experiment showed that investing the same amount of
space in the data cache brought a 1.3% improvement, which is less than value prediction.

It was assumed that when having a history depth of 4 or 8 , the right value can be
chosen perfectly. Since this scheme solely depends on history, it would not be able to
exploit highly predictable operation like increment. Moreover it was pointed out that
the results were optimistic because the setup did not have a mechanism to wait till any
instruction has retired, before using it for prediction. Also, the architecture was not
aggressive enough to exploit the full potential.

4 An empirical analysis of instruction repetition [3]

This paper tries to study the instruction repetition during execution. It tries to find the
various sources of instruction repetition.

A static instruction, i.e., an instruction in the compiled code, can be executed a
number of times. Each such instance is called a dynamic instruction. An instruction is
said to be repeated if multiple dynamic instances of it have the same outcome. Another
definition may have same inputs as requirement, though this paper follows the former
definition.

The various sources of repeatability are

e Repetition of input data
e Overhead of loops and other software constructs

e Calculation of data addresses

The paper defines a unique repeatable instance as the first dynamic instance of a
static instruction that re-occurs multiple times with the same outcome. Figure 1 shows
that most of the dynamic instructions are due to less than 20% of the unique repeatable
instances. The authors do analysis at three levels, global, function and local, to study
instruction repetition.

The global analysis is at the program level. In this analysis, the instructions are
divided into three categories (there is a fourth uninit category also, which is not signifi-
cant).



EE482: Lecture #10 5

1. Instructions whose inputs are affected by external program inputs.
2. Instructions whose inputs are affected by global variables.

3. Instructions whose inputs are affected by program internals.

The authors run various benchmarks. Data shows that the repeated instructions
mostly come from the third category. This is because a lot of instructions use internal
values.

The data in figure 3 (a bit confusing) shows the breakup in three different ways. First
part shows the breakup for all dynamic instructions for the whole program. Second one
shows the breakup for all the repeated dynamic instructions for the whole program. The
third one shows what percentage of dynamic instructions in each category of the first
part resulted in repeated instructions.

The function level analysis explores the repetition in function calls. Table 4 in the
paper shows the result of the analysis, though this data is useless as the function may be
passing pointers, which point to locations that hold different values at different time.

In the local analysis, the instructions are divided into two broad categories based on
following criteria:

1. the source of input data used by the instruction

2. the specific tasks performed by groups of instructions.

Both of these categories are further subdivided into five categories. Tables 5,6, and
7 show the results. The data is different than one generated in global analysis. This
is because at local level some information is lost. For example, compile time constant
passed using a function is not seen as a constant at local level.

Section 5 of the paper comments on the software exploitation of the instruction rep-
etitions. The challenges include lack of information on dynamic path at compile time,
problems posed common techniques such as loop unrolling, or cases such as recursive
functions.

Section 6 of the paper discusses hardware techniques to use instruction repetition.
The authors show that a large part of repetition can be captured in 8K entry, 4 way set
associative buffer instruction reuse buffer.

References

[1] Harbison S. P., “An Architectural Alternative to Optimization Compilers”, Proceed-
ings of the first Symposium on Architectural Support for Programming Languages and
Operating Systems, 1982.

2] Lipasti M. H., Shen J. P., “Exceeding the Dataflow Limit via Value prediction”,
Proceedings of the 29th Annual International Symposium on Microarchitecture, De-
cember 1996.



EE482: Lecture #10

[3] Sodani A., Sohi G. S., “An Empirical analysis of instruction repetition”, Proceed-
ings of the 8th International Conference on Architectural Support for Programming
Languages and Operating Systems, October 1998.



