
EE482: Advanced Computer Organization Lecture #9
Processor Architecture

Stanford University Wednesday, 26 April 2000

Memory disambiguation and speculation

Lecture #9: Wednesday, 26 April 2000
Lecturer: Ayodele Embry
Scribe: Brian Towles
Reviewer: Mattan Erez

1. A. Nicolau, ”Run-Time Disambiguation: Coping with Statically Unpredictable De-
pendencies”, IEEE Transactions on Computers, Vol. 38 No. 5, May 1989.

2. G. Reinman and B. Calder, ”Predictive Techniques for Aggressive Load Specula-
tion”, in Proceedings of the 31st International Symposium on Microarchitecture,
December 1998.

3. A. Moshovos and G. Sohi, ”Streamlining Inter-operation Memory Communication
via Data Dependence Prediction”, in Proceedings of the 30th International Sym-
posium on Microarchitecture, December 1997.

1 Run-Time Disambiguation

Compilers perform code transformations in order to expose the maximum amount of
parallelism to the target processor. While these techniques can be effective, they are
often limited by the fact that the compiler must ensure semantic correctness of the
program. This is especially true for memory accesses: if the compiler cannot guarantee
that memory locations are independent it must enforce strict ordering of accesses to these
locations. This is known as the problem of memory anti-aliasing or disambiguation. As
noted in the paper, the ability to perform accurate disambiguation of indirect references
(pointers) is crucial for a parallelizing compiler.
Prior parallelizing compilers, such as Bulldog, use purely static or compile-time tech-

niques for memory disambiguation. However, the authors are quick to point out the
shortcomings and potential computational expense of these methods to produce results,
if they produce results at all. This observation motivates run-time disambiguation in
which the burden of disambiguation is partly shifted from compile-time to run-time. All
decisions are still performed statically, but run-time tests ensure correctness. In essence,
rather than requiring the compiler to be always right, run-time disambiguation weakens
this condition, so that the compiler only needs to be usually right.
Two issues with run-time disambiguation were discussed in class: (1) semantic cor-

rectness and (2) code explosion. Ensuring semantic correctness guarantees that the
program will execute the same before and after run-time disambiguation optimizations



2 EE482: Lecture #9

are inserted. In the case presented in the paper, changing dependencies in one trace can
“break” dependencies in other traces. The solution is to detect dependencies dynamically
and if they exist branch out of the trace to fix-up code and then rejoin.
Code explosion, associated with the additional fix-up code required by run-time dis-

ambiguation is another potential drawback. However, the paper mentions several tech-
niques for minimizing the impact of this. First, run-time disambiguation is only applied
when it helps - i.e. when it exposes more parallelism in the underlying code, allowing
a more compact schedule. Also, since traces are often built using profiling information,
run-time disambiguation could be applied to those traces that are executed the most fre-
quently. These first two techniques fall under what the paper refers to as trace reduction.
Another method, called assertion unification combines several disambiguation assertions
such that a single piece of fix-up code is used if one of many memory aliases is detected.
Performance of run-time disambiguation is evaluated using the Bulldog research com-

piler and significant speedups are observed over a small set of algorithms/numeric appli-
cations.

2 Load Speculation

Load latency is identified as a major bottleneck in modern superscalar processors. This
paper examines the interaction and performance tradeoffs of four techniques designed
to deal with this problem: (1) dependence prediction, (2) address prediction, (3) value
prediction, and (4) memory renaming. Before discussing these methods, the class noted
the importance of the two mis-speculation recovery techniques presented in the paper.
The squash approach invalidates all instructions that occur after the misprediction point.
The re-execute approach only reissues those instructions dependent on the mis-result.
Note that it may take several iterations before all instructions indirectly dependent on
a mis-result are detected and reissued. In a highly speculative system, the performance
increase from using the more complex re-execute policy can be significant.
Without speculation, modern processors must allow the addresses of all pending stores

to be resolved before satisfying a waiting load request. In dependence prediction, a load
can be predicted as either being independent of prior stores or dependent on a particular
store. The most naive form of this prediction discussed is blind prediction. In blind
prediction, loads are always assumed to be independent of previous stores. If a store’s
address is later resolved and conflicts with this assumption, the load is reissued. Wait
prediction, a single bit is added to each instruction in the instruction cache. This bit
is initially cleared, indicating that if the instruction is a load, it may issue as soon as
possible (as in blind). However, if a misprediction is later detected, the wait bit is set for
that load instruction. When a load with a set wait bit executed, it waits for all pending
stores to be resolved before issuing. Finally, store sets attempt to build the sets of loads
and stores that alias to the same memory location. Memory operations are given store
set id’s, such that those operations aliasing to the same location have the same id. Load
dependencies can then be resolved by checking for stores with the same id. For squash



EE482: Lecture #9 3

recovery, the techniques have increasing performance in the order presented here. For
re-execution recovery, the techniques have roughly similar performance.
Address and data value prediction attempt to resolve memory dependencies early

by either predicting the address of a load or by simply predicting the result of a load,
respectively. The paper explores several techniques for both of these approaches. Last
value prediction guesses that a the next value for a particular load (either the address
or data) will be the same as the last value. A stride predictor tracks the last value plus
a stride - the difference between the last and one before last value. The next predicted
value is the last value plus the stride. A context predictor chooses between the last several
values seen for a load. All of these single predictors use confidence counters to decide
whether or not to predict, and in the case of the context predictor what value to use.
The hybrid predictor presented in the paper combines a context predictor and a stride
predictor plus confidence counters to guide selection between the two. Results showed the
expected trends for both address and data prediction: the more complex the predictor,
the more accurate it is. Although the addresses could be more accurately predicted, data
value prediction provided “more bang for the buck” in that the memory access could be
skipped (of course the loads must still actually occur to confirm the prediction).
Memory renaming identifies load/store dependencies in order to directly communicate

a value from a store to its corresponding load, bypassing memory. Recently executed
stores are cached and if a later load hits in this cache, the load/store dependency is
recorded. If the load is executed again, it’s value is predicted from the store it was paired
with. In essence, this load has been renamed so that it does not conflict with other loads
or stores being executed, eliminating potential false dependencies. Two implementations
of this idea are discussed. Original renaming, records the address of stores in a store
address cache and their values into a value file. When a load hits in the store address
cache, the next prediction of the load is the value file entry associated with that particular
store. In merging renaming, the authors try to apply the idea of store sets to memory
renaming. Instead of a single load/store pair being identified, the original renaming
technique is extended to clusters of loads and stores. Both of these approaches provided
only modest speedups and merging renaming performed generally worse.
Finally, the paper investigates the interaction between all of the different prediction

schemes. The class concluded that the benefits of value prediction seemed to “swamp”
that of the other prediction methods. Mattan decided to speculate further, noting the
relative unimportance of the other methods might be due to the short SimpleScalar
pipeline used in the paper’s simulations.

3 Data Dependence Prediction

In this paper, the authors explore speculative techniques for turning implicit communica-
tion between instructions into explicit communication. Specifically, they are concerned
about communication through the memory name space (i.e. memory). To streamline
this, dependencies must be established as quickly as possible and storage structures that



4 EE482: Lecture #9

best meet the communication requires must be provided. Data dependence prediction
establishes dependencies based on history information. Then dependent loads and stores
communicate through a speculative name space derived from these dependencies without
incurring the overhead of address calculation, disambiguation, and memory access. Of
course, since this technique is speculative, the communication must eventually be verified
through the memory system.
In class, we briefly discussed the proposed techniques for implementing data depen-

dence prediction. In speculative memory cloaking, synonyms are dynamically associated
with load/store pairs and are stored in a synonym file (cache). The operation of this
structure begins with a store/load dependence to an address in memory, which is de-
tected as stored as an association. When a later dynamic instance of the same store is
executed, the store value is allocated an entry in the synonym file. If the load associated
with that store is then executed, its association with the previous store is used to index
the synonym file and access the value of the store. This value is speculatively used as
the result of the load. The author’s stated that cloaking still requires that the load is
verified through the memory system, so while the load latency may be avoided through
speculation, no memory bandwidth is saved. However, in class it was noted that only
the address of the speculative load needs to be verified. So, it does seem that memory
bandwith can be saved in the cases where the speculation is correct.
An addition to speculative memory cloaking is speculative memory bypassing in which

load/store pairs that coexist in the instruction window are speculatively detected and
matched. In this case, def-store-load-use chains are converted def-use chains. Finally,
the transient value cache (TVC) is suggested to eliminate wasted memory bandwidth for
short-lived memory values (i.e. ones that are quickly killed by another store). The TVC
operates in parallel to the L1 cache, but for accesses that are likely to be quickly killed.
So, stores with predicted output dependencies are sent only to the TVC and loads with
predicted true dependencies first check the TVC before accessing the L1 cache. Also,
evictions from the TVC are directed to the L1 cache.
While the techniques presented did provide fairly accurate prediction of dependencies,

the overall IPC speedup proved to be modest. Perhaps the most interesting result was
the potential reduction in memory system traffic produced by the transient value cache.


