
EE482: Advanced Computer Organization Lecture #8
Processor Architecture
Stanford University Monday, 9 May 2000

Memory Prefetching

Lecture #8: Monday, 24 April 2000
Lecturer: Shuaib Arshad
Scribe: Ayodele Embry
Reviewer: Mattan Erez

1 Chen and Baer - Effective HW Based Data Prefetch-

ing for High Performance Processors

Chen and Baer’s hardware based approach seeks to hide memory latency by providing
data in the cache just in time for usage. They felt hardware was more advantageous
than software since hardware approaches required no additional instructions and operate
dynamically at runtime. Further, hardware can directly see the address stream and knows
if something is already in the cache.

They describe four different types of access patterns - scalar, zero stride, constant
stride, and irregular. They also described two different types of prefetching, temporal
which is used with lookahead hardware and spatial which prefetches using the location
of an address, but only examined the temporal.

Their hardware implementation uses a Reference Prediction Table (RPT) which con-
tains four entries and records information about the tag, previous address, stride and a
2-bit counter for state.

They used three different techniques for hardware prefetching which differ mostly on
the timing of prefetching: 1) Basic stride - the next prefetch is one stride ahead and
is performed when the load is encountered. It may occur too late to be effective for
something like a small loop. 2) Lookahead - this is similar to basic but triggered by
LA-PC, which is several iterations ahead of the PC, improving timeliness. 3) Correlated
- deal with nested loops by correlating on the direction of the end-of-loop branch. The
correlated predictor used 2 bits, one bit for the inner loop and one bit for the outer loop.

Rather than making any changes to the PC itself, they utilize a second PC that is
several instructions ahead. This lookahead PC (LA-PC) uses the PC to reference the
RPT. The counter must be able to travel ahead of the PC in order to predict where the
code will go next. The LA-PC should be enough iterations (branches) ahead of the PC
so as to correspond to a latency that is between L1 miss and L2 hit latencies.

There are several options for prefetching including operating n iterations ahead and
using the LA-PC. The LA-PC uses a self-measure of latency. It is unnecessary if good
information is given to the compiler. The lookahead limit should be greater than the



2 EE482: Lecture #8

maximum number of cycles to access the memory, but not cross too many basic blocks
because decreased branch prediction accuracy will negatively impact performance. They
also described several software approaches. Software approaches usually can go further
ahead than a HW approach because they can take into account other factors such as
data coherency, task scheduling, and task migration. The software approach has a slower
start because of priming the pump, but can catch up over time assuming the loops are
long enough. A hardware n iterations ahead approach could come close to the prefetch
distance of the software approach with better branch prediction.

Several memory models are discussed in this paper: 1) Non-overlapped which is a
completely sequential memory access. 2) Overlapped where the access is divided into its
three stages of execution and each stage can execute in parallel. 3) Pipelined is similar
to overlapped except the pipeline stages are determined by the amount of computation
that can fit in a single clock cycle (i.e. a new access every cycle).

We discussed that the 30 cycle memory access time that they gave seemed small for
main memory since the L2 access time is around 8-12 cycles.

Performance: Matrix had good performance since it is easy to predict dense matrices
and the cache is able to hold most of the data. Xlist’s relatively good performance was
surprising since it contains many linked lists. However, it is probably that the linked list
was formed contiguously in memory so spatial predicting was effective. MCPI (miss cycles
per instruction) increases for matrix with a block size past 32 due to wasted bandwidth
and cache pollution that is bad for performance.

In general, mechanisms with a lot of state don’t work well with a multiprocessor
environment since they depend on retained state and paging and context switching could
have a negative effect. However, training times are short (2 iterations per loop), so much
performance may not be lost due to paging.

You get better performance when you try and cover the memory - L2 latency rather
than L1 - L2 latency. This is because more can be gained with the longer latency. Other
methods such as out-of-order execution are effective for short latencies.

For the RPT size graphs, it seemed that more data points should have been included
since the graphs did not flattened out. However, we also noted that the table size would
be prohibitive after 1K entries.

The lookahead limit seemed to correspond to a number of cycles slightly above the
latency of the main memory. A little extra room is provided to avoid contention.

2 Joseph and Grunwald - Prefetching with Markov

Predictors

Joseph and Grunwald present another hardware based approach to prefetching using
Markov predictors. One version replaces entries based on probability and the other
utilizes a LRU (least recently used) replacement policy.

They discuss the metrics along which prefetching should be evaluated including: a)



EE482: Lecture #8 3

Coverage - percentage of loads which are predicted b) Accuracy - was the prefetch guessed
correctly or not c) Timeliness - is the information fetched soon enough to be used but
not so early that it is discarded before it is used.

In comparison to the Chen and Baer paper, there is a difference in the hardware
due to the location of the prefetch mechanism. Chen used the address stream to obtain
prefetch information. In this paper, the miss stream is used because it allows for less
frequent prediction and its hardware can be located off chip. Since the miss stream is
outside of the device it is feeding, it has much less knowledge and can’t access hits or the
PC.

Joseph and Grunwald assumed that an observed Markov model could approximate
the miss reference stream. On a miss, the value is looked up in the table and all 4
addresses recorded for this entry are fetched. Then, on the next miss, the table entry
is updated for the previous miss and a Markov model for misses is built. They assume
that a miss will usually follow a miss to the same few addresses. However, this method
only kicks in after the 1st miss and is only triggered by an L2 miss even after it has been
trained. In contrast, the Chen approach uses the PC as a trigger so it can have zero
misses after training. Further, always fetching 4 addresses is wasteful.

The Markov Model is actually based on correlation. A second model was presented
which uses the same prefetch and prediction, but uses the LRU replacement policy. The
LRU model ended up being better than the original Markov model. Basically, this means
that LRU rank is better than probability in determining a prefetch. This is probably due
to changing program behavior and few L2 misses.

The Hidden Markov Model (HMM) is a different model than the one discussed in
this paper. The Hidden Markov Model doesn’t know states in advance but it instead
discovers states. It may improve accuracy, but not the hit rate. However, provided that
enough training data is available, it can possibly give better results.

Although they listed timeliness as an important metric for evaluating prefetching, no
support is given in this paper.

3 Mowry - Design and Evaluation of Compiler Al-

gorithm for Prefetching

The Mowry paper was the only software approach discussed. In actuality, even software
approaches utilize specialized hardware in that the ISA (instruction set architecture) must
include a prefetch instruction and the cache needs to be non-blocking. The prefetch is
usually not done in the normal instruction pipeline because in case of an exception, the
prefetch should not cause the system to stall.

The main problems with software approaches are increased overhead and stress on
memory. To limit the number of prefetches and concentrate only on the useful ones,
Mowry looked at a Locality Analysis. Reuse Analysis discovers intrinsic data reuse
within a loop nest using a reuse vector. The reuse can be spatial, temporal, or group (a



4 EE482: Lecture #8

combination of spatial and temporal). The localized iteration space focuses on accuracy
and distance between reuse to determine if reuse translates to locality. Reuse only trans-
lates to locality if subsequent uses of data occur before the data is displaced from the
cache. They use an algorithm that tries to determine whether or not information will
already be in the cache since the access is a prefetch and the cache can not be directly
accessed.

A prefetch predicate tries to determine whether or not a request has already been
made if the instruction is not present in the cache. If a request has been made, bandwidth
will be saved by not making a duplicate request. In scheduling the instructions, use the
shortest path to determine and hope that it is not degenerate.

4 Our Approach

A brief discussion ensued about which approach we would use to build a system. Some
would use an address generation approach and others would use some combination of
both hardware and software. It was mentioned that a software approach could be used
orthogonal to the Markov or non-stride versions.


