EE482: Advanced Computer Organization Lecture #4
Processor Architecture
Stanford University Monday, 15 May 2000

Fetch Issues

Lecture #4: Monday, 10 April 2000
Discussion Leader:Jinyung Namkoong
Scribe: Paul Wang Lee

1 How to Read a Patent

As an extension to last lecture’s “How to Read a Paper”, Professor Dally explained the
format of patents and gave tips on how to read a patent in preparation for one of the
reading materials for next lecture.

e Heading : Includes various information such as the inventors, date of filing, cited
references and related publications.

e Terminology : Patents use certain words in certain ways, with different meanings.
e.g. ’consists of” has the meaning 'consists solely of’, so ’comprises’ is used in cases
where there may be other parts.

e Claims : The claims at the end of a patent are the ideas that are being claimed as
the invention. There are two types of claims, which can be thought of as in a tree
structure. Independent claims are central ideas. Dependent claims are claims that
elaborate on the central idea.

e “Summary of the Invention” : succinct description of the invention.

e Two requirements of patents : 'Enabling’ in that a person of average skill in the
art must be able to reproduce the invention based on the disclosed details. ’Best
Mode’ in that the best configuration and use of the invention known at the time of
application must be described.

e Searching through patents : There is a patent search engine at 'www.ibm.com’ if
one needs to search through patents.



2 EE482: Lecture #4

2 Introduction

Present day processors execute multiple instructions per cycle to improve performance.
As the number of instructions per cycle increases, it is becoming more difficult to provide
the instructions to fill the capactiy of the execution units. Hence, the importance of
front-end is increasing. There are four major limiting factors, which are I-cache miss,
Branch misprediction, Target Address determination, and Alignment. The three papers
discussed today attack different subsets of these problems.

3 Reinman/Austin/Calder Paper [1]

Introduces the Fetch Target Buffer, which is an improved BTB. Claims it is scalable, and
has fast decode time.

These front end architectures focus on reducing I-cache miss and latency from target
address determination.

3.1 Rationale/General description

e Argument on poor interconnect scaling : with continued scaling, interconnect delays
are becoming worse. Memory structures are affected very much by this trend, and
thus the front end designs, which contain significant amount of on-chip memory are
limited by this effect. Note by Professor Dally : The basic idea is correct, but the
wire scaling factors discussed in the paper are wrong. The paper assumes thickness
does not scale, but it is scaling now, due to process difficulties, etc.

e The scalability of the proposed architecture comes from the two-level structure of
the branch prediction architecture, and the decoupling provided by the fetch target
queue. The decoupling moves the slow memory structures out of the critical path.

e Fetch Target Queue: The FTQ is used to bridge the gap between the branch pre-
dictor and the instruction cache. The branch predictor produces fetch target block
prediction and stores it in the FTQ, and the I-cache consumes the stored predic-
tions. The FTQ permits the branch predictor and I-cache to operate autonomously,
and this decoupling allows the latency of large memory in the I-cache to be hidden
most of the time.

3.2 Prior Fetch Prediction Architectures and the FTB

Branch Target Buffer BTB’s were proposed to provide branch and fetch prediction
for wide issue architectures. BTB holds target addresss for branches. Multilevel
BTB’s were previously found (in 1993) to be not cost effective, but since then,
technology has changed.



EFE482: Lecture #4 3

Basic Block Target Buffer BBTB is indexed by the starting address of the basic
block, and holds the taken target address and the fall-through address of the basic
block. The branch predictor dictates which address to fetch in the next cycle.

Fetch Target Buffer This is the branch prediction architecture modeled in the paper,
and is an improved BBTB, with changes to increase storage efficiency. The fall-
through basic blocks and basic blocks with branches that are seldom taken are not
stored. In addition, only the lower bits of the fall-through address is stored, since
typical fall through addresses are close to the branches.

3.3 Comments

e Relating to Figure 6, it would have been more relevant if axis were in terms of
performance.

e The authors seem very obsessed with reducing memory usage. For example, in the
FTB, the fall-through address is stored in terms of the lower n-bit address.

4 Luk/Mowry Paper [2]
Prefetching instructions solves the memory latency problem for I-cache misses. This

paper discusses an instruction prefetching scheme where the compiler provides hints to
the hardware to allow more efficient prefetches.

4.1 Why prefetch?

Memory is slow, so to hide the latency, fetch in advance.

4.2 Terminology/Critria for prefetching

coverage factor : fraction of original cache misses that are prefetched.
unnecessary : if the line is already in the cache.

useless : if it brings a line into the cache which will not be used before it is displaced.

An ideal prefetching scheme would provide 100% coverage and generate no unnecesary
or useless prefetches. Timeliness of prefetches are also important, and the prefetching
distance should be large enough to hide the miss latency, but not too large so that the
line is likely to be displaced by other accesses before it can be used.



4 EE482: Lecture #4

4.3 Previous Work

e Next-N-line prefetching : prefetch N sequential lines following the one currently
being fetched

e Target-line prefetching : use prediction table to record address of line which most
recently followed a given instruction line

e Wrong path prefetching : next N line prefetching combined with always prefetching
the target of control transfers with static addresses.

e Markov prefetching : primarily focused on data cache misses, stores correlations of
consecutive miss addresses in a miss-address prediction table.

4.4 Cooperative Instruction Prefetching

A fully automatic instruction prefetching scheme proposed by this paper. The compiler
and the hardware cooperate to launch prefetches earlier, while maintaining high cover-
age and reducting the impact of useless prefetches. There are two novel components,
instruction-prefetch instructions, and prefetch filtering.

e Instruction-prefetch instructions : using this instruction, the program provides
hints to the hardware. In the implementation proposed by the paper, this in-
struction is removed in the decode stage to enhance performance.

e Prefetch Filtering : prefetch filters resides between the I-prefetcher and the L2
cache, and reduces the number of useless prefetches. A prefetch bit associated with
each line in the I-cache, and two bit saturating counters in the L2 cache are used
to decide whether to prefetch or not. Whenever prefetches are gone unused, the
counter is incremented, and over a certain threshold, the prefetches are ignored.
The counters are reset on fetches. It is used to enable more aggressive prefetching
without polluting the cache.

4.5 Comments

Hardware vs. Software-based prefetching Hardware based prefetching is intrapro-
cess, software based prefetching is interprocess. If branching is small, hardware-
based is easier, but with many branches, software-based is easier.

5 Conte/Menezes/Mills/Patel Paper [3]

5.1 Alignment

With multiple instructions issuing in each cycle, the fetch unit must extract multiple
non-sequential instructions and align them in proper order. This is difficult due to short



EFE482: Lecture #4 )
branches within a cache block, or multiple branches in a cache block.

5.2 Solutions to Alignment Problem

sequential fetch a sequential block, and then apply a mask to extract needed instruc-
tions from the block. This is the simplest scheme for fetching multiple instructions
per cycle.

interleaved sequential interleave I-cache into two banks, and prefetch one sequential
block in advance to allow high issue rates for accesses that span block boundaries.
Non-sequential instructions are not allowed.

banked sequential improvement of interleaved sequential, the likely successor address
is found for a given fetch address and its successor block is used in the same way
as the next block in the previous scheme. Intra-block branches cannot be fetched
in same cycle, because the useless instructions in between cannot be eliminated.

collapsing buffer intra-block branches can be taken. Merging is achieved, so that the
target instruction follows the branch instruction in the decoder. In order to do this,
an additional buffer is added to collapse the gaps between valid instructions caused
by intra-block branches. There are two possible implementations, a shift register
or a bus-based crossbar.

5.3 Comments

e Usage of Harmonic Mean : in order to obtain execution time comparisons, the
harmonic mean should be used for speed values. (IPC, etc.)

e The compiler optimizations used for this work is different from the other papers in
that it increases I-cache utilization as opposed to fetch efficiency.

e This paper ignores I-cache bandwidth, but bandwidth is highly relevant to perfor-
mance.

e Proper performance comparison should be done by adding I-cache capacity com-
parable to the added overhead.

References

[1] Glenn Reinman, Todd Austin, Brad Calder, “A Scalable Front-End Architecture
for Fast Instruction Delivery”, Proceedings of the 26th International Symposium on
Computer Architecture, May 1999.



EE482: Lecture #4

[2] Chi-Kung Luk, Todd C. Mowry, “Cooperative Prefetching: compiler and hardware
Suport for Effective Instruction Prefetching in modern Processors”, Proceedings of
the 31st International Symposium on Microarchitecture, December 1998

[3] Thomas M. Conte, Kishore N. Menezes, Patrick M. Mills, Burzin A. Patel, “Opti-
mization of Instruction Fetch Mechanisms for High Issue Rates”, Proceedings of the
22nd International Symposium on Computer Architecture, June 1995.



