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1 How to Read a Paper

Professor Dally was getting requests on tips for reading papers, so he went over his
method in class:

1. Before diving in, think about what your goals are, and what you want to get out
of the paper. You need to approach the reading with an aim to extract info; you
may want to target specific areas of the paper in case you are looking for something
particular. Keeping these objectives in hand will help you while reading.

2. Read the abstract first. This should be an advertisement for the paper.

3. Read the conclusions. Figure out what the authors accomplished, so you know
what their goals were.

4. Find the “paper overview” section in the introduction and read it if you need to.
If you don’t know about a certain topic, you may find background material here.

5. Make a quick first pass through the paper, so you understand their presentation of
the topics. Figure out how the equations fit into the discussion, but don’t try to
understand the math. On the second pass, read the paper more carefully.

6. Highlight important parts of a paragraph so you don’t have to reread the entire
paragraph each time. This helps in class discussions as well.

7. Write down an outline as you go- this will help you remember what you have read.
You can refer back to this outline as you go through the paper.

8. Look up key references if you are looking for a particular topic. This paper may
not have what you are looking for, but it may build on top of a topic you need to
research. In the library, you can find guides that list forward references for each
paper, which may also be useful in your quest.
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2 Introduction

Branch Predictor
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A branch predictor can be thought of as a black box, as shown above. We feed it info
about the instruction pointer (PC) and outcome of that branch, and it uses it to speculate
a course of action.

• What is branch prediction and what are we actually predicting?

We are predicting where the next instruction is in the instruction stream. We
speculate two items: the direction of the branch (taken/not-taken) and the branch
target (where the branch is going).

• Why do we need to compute the target (wouldn’t the branch target be the same
everytime)?

The target address changes if a branch is computed, or if it is an offset branch. A
fetch may block, and may need to predict the target before going to the decode
stage. A large latency will need to be filled with bubbles, which is not resourceful.

• Why do we predict branch direction? Are there other solutions?

One solution is to explicitly execute both instruction paths when we reach a branch.
This has the problem that the number of paths grow exponentially. There are lots
of branches in a program - a one out of five instructions is a typical cited number.

The Pentium Pro has about 50 instructions in flight at one time; applying the above
ratio here gives us 10-20 branches in that window. This shows how impractical it
is to use parallel computation of both paths. It is very inefficient if we don’t use
branch prediction.

Side note: you can always write code to fool any branch predictor. One way is
to build a model of the predictor in software, and use its own algorithm to guess
incorrectly each time.

3 Lee/Smith Paper [1]

3.1 Branch Prediction Strategies

We discussed some of the existing approaches to the branch problem.
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Loop buffers A small, very high speed buffer maintained by the instruction fetch stage
of the pipeline. Essentially a very small I-Cache. The original i386 had 32 bytes of
loop buffer on a block boundary, and programmers tried to hack their code to fit
entire loops in there very tightly for faster execution. Does this solve the problem
of branch prediction? Not really; it just alleviates the high memory latency for
misses in the instruction cache. (May break for unrolling loops.)

Prefetch branch target Method of “eager fetch”, doesn’t solve any problem, just
makes misses incur less delay.

Prepare to branch Software gives hints to the hardware about what the branch target
will be. It saves us the target prediction since it has already been written into one
of the target registers.

Branch delay slot A slot for executing an independent instruction while waiting for
the branch to resolve. If you have 5 or 6 branches waiting to resolve, you may not
have 30 independent instructions waiting to be executed. Using this feature breaks
binary compatibility across a processor family, since branches may take a different
number of clock cycles to resolve.

Branch target buffer A small cache memory associated with the instruction fetch
stage of the pipeline. It contains the branch instruction address, prediction stats,
and the branch target address associated with them. Its structure is similar to a
TLB. The P6 has a BTB of size 512.

3.2 Methodology

• As in all papers, the authors select a set of benchmarks to test performance.

• Though a bit hard to decipher, Figure 5 shows that a small number of instructions
are executed a large percentage of the time.

• Figure 6 is interesting as well. Certain patterns can be seen easily by a branch
predictor. Line 5, for example, is a for loop which loops 14 times then breaks out.
Line 8, however, is a pattern that any human can detect, but branch hardware
would likely fail on.

3.3 Prediction Mechanisms

Static Prediction Base all prediction on what the compiler gives you for input. These
tables do not change at run time. Many compilers also let you feed profile data
back into your program so it runs faster by making informed decisions on how to
predict branches, how to use the cache, etc. The Sun compilers in Sweet Hall have
this capability. If you haven’t tried it out, here is how you do it:
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Compile the program by informing it to generate profile data

$ /opt/SUNWspro/SC5.0/bin/CC -p -xprofile=collect:a.out main.C

Run the program a few times to “train” it.

$ time ./a.out

Recompile it using the data we generated.

$ /opt/SUNWspro/SC5.0/bin/CC -xO5 -xprofile=use:a.out main.C

Execution should now be faster. (Compare the time outputs)

$ time ./a.out

Dynamic Prediction In this case, executing the program “trains” the branch predic-
tion hardware on the fly. Branch history may be kept to determine the best course
of action to take when that branch is reached again.

Prediction based on Opcode The opcode of the branch instruction may affect its be-
havior. This method has almost disappeared since it isn’t that effective. Professor
Dally mentioned that the Alpha implements this, since all their branches are the
same instruction but with different opcodes.

Return Address Stack On every JTS you push the calling address onto the RAS, and
on every RTS you predict the target from the RAS. All current high-performance
microprocessors have RAS’s now. Usually they are 8 or 16 levels deep.

Early Resolution Dedicated logic for resolving branches out of order.

The authors tried to correlate prediction performance with actual performance. In
their simulation, they had penalties measured in cycles. This is not accurate enough due
to differences in the way Out-Of-Order and SuperScalar processors work compared to
In-Order.
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From the figure above, In-Order processors stop the instruction flow when a branch
needs to be resolved, whereas OOO processors can still finish executing a few paths while
waiting for the branch to resolve. There is more of a rampup-rampdown seen in OOO,
while In-Order is all-or-nothing.
Quandary: All these methods are based on history– correlated with all other branches.

How do you base your prediction on the outcome of that prediction? (your history of
other predictions?) One can try to update the tables speculatively, since they are easy
to flush anyway.

4 McFarling Technical Note [2]

Almost all branch prediction papers written after 1994 reference this one.

Yeh/Patt name McFarling name description

Keep info for each specific branch to find patterns
per address (PA) local Table of 2-bit counters indexed by program

counter to get prediction.
Take advantage of other recent branches to make

GA global prediction. All branches update the same BHR,
and we ignore the program counter

In each of these ideas, we index into a table of 2-bit saturating counters that dictate
if the branch should be taken or not. If we take a branch we increment the counter, if
we don’t take the branch, the counter is decremented. The counters are initialized at 10
or 01, states which are more neutral than 00..

state interpretation
11 strongly taken
10 weakly taken
01 weakly not-taken
00 strongly not-taken

Let’s use 3 bits of history to index the counters which are initialize to 01. If we
encounter have a pattern that looks like

1011 . . . 1010 . . . 1011 . . . 1011 . . .

we use 101 to index into the counter table, and the next time we encounter a 101, we
should predict taken since the counter state is at 11.
McFarling introduces a schemes he calls gshare. It is based on a scheme called gselect

which adds some bits of the instruction pointer to the index before doing a table lookup.
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Gshare goes one step further by using twice as many bits from the IP as gselect. This
way, it is unlikely that there will be aliasing in the counter table. Gshare removes most
interference between different branch instructions.

He then combines two predictors, a global and a local, and keeps a tally for each
branch that records the success rate of both predictions. The final prediction is chosen
by taking the prediction most accurate for that branch. This method is implemented in
the Alpha 21264.

5 Federovsky et.al. Paper [3]

The authors try reducing the branch prediction problem to a previously solved one (data
compression). They are asking, what is the incremental information in each bit (of the
predict taken/not-taken bitstream). If there is no incremental information, then that
means we can compress the data, and predict the next branch. But if there is new
information each time, predicting successive branches is hard.

6 Ending Thoughts

• Nobody really touches upon how branch prediction improves performance of the
entire computer system as a whole. Maybe because there are too many variables?

• Nobody evaluates context switching in these papers. Most simulations are assumed
to be a single thread running with full context, no switching. How can we speed up
context switching by saving the least amount of branch prediction state for each
thread?

• Researchers have stopped trying new branch prediction algorithms, and instead
try reducing the learning time (compulsory misses) of predictors, and increasing
accuracy at the same time. Predictors that need a longer learning time may not be
useful for small programs.

• What are good ways to reduce interference and aliasing?

• In the YAGS branch prediction scheme, the warm-up time is very small. Aliasing
is also reduced.

• Partial Matching. Keep history, but only use as much history as you have collected
for the prediction; don’t use the unitialized portions. This is similar to Classless
InterDomain Routing (CIDR) in IP routers that forward packets to the most specific
outgoing interface they know about.
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