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1.0 Introduction

The majority of modern superscalar processors use Reduced Instruction Set Computer (RISC)
type instruction sets. However, their hardware design is no longer aligned with the RISC philoso-
phy and is getting more and more complex. The ISA originally designed for simplicity now
causes unnecessary complication for the compiler and the architecture: hardware ignores many of
the optimizations performed by the compiler and the compiler “tricks” the hardware to ac
desired results. For example, a major step of compilation is register allocation and spill-cod
eration. Upon receiving the compiler’s carefully constructed register assignment, the har
promptly renames the registers into unique hardware identifiers, throwing away much of the
piler effort. Ironically, this renaming operation proves to be a bottleneck of modern proce
since it requires serial treatment of all instructions. This example and similar problems illu
an ISA barrier to efficient superscaler execution.

A key element in overcoming the ISA barrier is to allow the compiler to effectively commun
its plan of execution to the hardware. Returning to the spill-code generation example: wh
compiler runs out of logical registers, it spills the contents of a logical register to memory u
memory store. If there are more physical registers than the software addressable architectu
isters, then the process may rename some of the registers during run time. As a result, th
ory reference issued by the compiler may be completely unnecessary because the proce
already renamed the logical register to some physical register and there are other physical
that the processor can rename to. For processor with a large number of physical regis
available to the compiler, it may be more efficient for the compiler to state its intent of spi
then to issue an unnecessary memory reference. Table 1 lists the number of registers 
modern processors.

The large gap between the number of logical registers and physical registers exacerbates 
communication between the compiler and the processor. In an attempt to clarify the com
intent and to take advantage of the growing number of physical registers, we propose a 
instructions to use in the spill-code generation. This addition to the ISA is not tailored to an
cific hardware. Instead, these instructions are general enough such they allow more efficien
ations of software on any superscaler processor. The mnemonic and format of these instr
are given below: 

spill Rx, spill_ptr (substitution of store)
fill  Rx, spill_ptr (substitution of load)

Table 1: Logical Register vs. Physical Register

Processor
ISA Register

(Int / FP)
Physical Register

(Int / FP)

MIPS R10000 32 / 32 64 / 64

Alpha 20264 32 / 32 80 / 72

Pentium Pro 4 / 8 40
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Ideally, there is no address and the HW has enough resources to handle all spills. But if the hard-
ware actually runs out of resources it will need a complex negotiation with the OS (or runtime
system) to get memory, and also very complex mechanisms and algorithms to handle it. To sim-
plify the hardware, we introduce a spill pointer to keep track of a stack of relative addresses. The
most obvious reason for using a stack is when there is a recursive call. 

It is possible for a spill to have multiple fills if the data is not modified in between the fills. There-
fore it is important to track these fills so the hardware will know when it can reclaim the register.
There are two ways to track these fills: a. issue spill and fill in pairs or b. have an explicit fill-kill
instruction to indicate the last fill. If the compiler issues the spill and fill in pairs, then each fill
implicitly implies that there will be no other fills for this spill. On the other hand, if a fill-kill
instruction is used, then the hardware must realize that the spilled register may have multiple fills
until the last fill is encountered as a fill-kill. 

Adding two explicit instructions to spill-code generation to take advantage of the physical regis-
ters is a more elegant solution than to increase the addressable space of the software. First of all,
instruction word format dictates the number of logical registers, so the number of software
addressability cannot be changed for existing ISA. Secondly, the spill and fill instructions allow a
very flexible hardware implementation. The designer can simply choose to execute them as store
and load instructions, or add controls to handle the spill code efficiently. This range of implemen-
tations provides more freedom to the hardware designer. A more detailed look at some of these
options is presented in Section 4.

Figure 1 shows a pseudo code to help illustrate the use of the explicit spill and fill. Assume there
are two logical registers, R1 and R2, and four physical register (P1, P2, P3, and P4). The first col-
umn in the figure is the line number, the second column is the pseudo instruction, the third column
is the logical register that’s being referenced, the fourth column shows the physical regist
the logical register is mapped to or the action that would be taken if there is no spill/fill ins
tions and the last column shows what is actually done when spill/fill are supported.

1 use R1 P1

2 use R2 P2

3 spill R1 P1 -> Mem Tag P1

4 ld R1 Mem -> P3

5 use R1 P4

6 fill R1 Mem -> P1 Rename R1 to P1

Untag P1

Figure 1. Example Code

Line 3 shows that the content of logical register, R1 needs to be spilled. At this time, R1 is being
mapped to P1. If the spill instruction is not supported, this instruction will turn into a memory 
erence and store the content of R1 to the memory. However, if the processor supports the s
instruction, then it simply tags the physical register that is associated with R1. In other words,



using spill instead of store delays the memory reference. If there are enough physical registers
such that the front end can always rename, then spill delays the memory reference indefinitely.
However, if there is not enough physical registers, then the spill is executed only when it is abso-
lutely necessary to reclaim one physical register.

Similarly on a processor that supports fill, a fill instruction results in the untag of a previously
tagged physical register, as seen in line 6. As in the case with spill, if there are enough physical
registers, the reference to load P1 is handled in the front end if it does not need to go to the mem-
ory.

1.1 Hypothesis

We hypothesize that using explicit spill and fill instructions increase ILP by reducing the produce-
store-load-use false dependences and improve memory bandwidth by reducing the superfluous
stores and loads.

1.2 Organization

The rest of the report is organized as follows. Section 2 will detail our simulation method by first
describing the base model, then detailing our modifications and the benchmarks. The results of
the simulations are reported in section 3. In section 4 we suggest some future work which is fol-
lowed by our conclusions in section 5.

2.0 Simulation Method

In this section we discuss our simulation method. We start by describing our simulator, follow by 
a description of the two experiments we run to prove or disprove our hypothesis.

2.1 Simulator Model

In order to verify our hypothesis, we enhance the gcc compiler to annotate the spill and fill
instructions, and modify the SimpleScaler simulator to recognize these annotations [1][2].  To add
the spill and fill instructions, we annotate memory operations caused by register allocation fail-
ures and caller/callee register saving. These annotations are passed to the assembler and stored as
a bit field in the instruction word. This differentiates the spill code from other store and load
instructions. The SimpleScaler simulator needs to not only recognize these new instructions, but
also perform the necessary accounting to gather the performance data.

The simulator ran the SPECint95 benchmarks to show the improvements [3].  For all the bench-
marks, we skip the first 500M instruction and collect data on the next 100M instructions com-
pleted. 



2.2 Experiments

2.2.1 ILP
To show the effect of adding the explicit spill and fill instruction on ILP, we first find the maxi-
mum ILP given a fixed window size without the explicit spill/fill instructions. Then we run the
same set of benchmarks with the explicit instructions. To find the maximum ILP, we make a few
assumption about the hardware. First of all, we eliminate the control dependencies by assuming
perfect branch predictions. Then we remove the name dependencies by providing an infinite num-
ber of physical registers and renaming. All data dependencies are honored. The fetch unit has infi-
nite bandwidth and perfect branch and target prediction while the execute unit has infinite
hardware to resolve any resource conflicts. All computations have a 1-cycle latency except for
loads which take 2 cycles. As a results of the infinite number of physical registers, the spill and
fill never need to go to the memory and thus have zero latency.

We simulated three memory name dependency models: 
a. No disambiguation (in order stores, loads wait until there is no prior store)
b. Load disambiguation (in order stores, loads wait until there is no store to the same address)
c. Perfect store and load disambiguation

2.2.2 Memory Reference
To measure the impact in memory references, we gather three sets of data:
a. number of dynamic spills and fills
b. dynamic instruction distance between a spill and its corresponding fill
c. maximum number of outstanding spills (spills that have not been filled between a spill-fill

pair)

The first number gives us the percentage of dynamic spills and fills to stores and loads. This is a
direct measurement of how many memory references can be saved. The second number indicates
whether the references are likely to be found in the registers. And the third number shows how
much extra register space is needed to hold spilled data.

3.0 Results

In this section we analyze the data collected from the experiments to prove or disprove our
hypothesis. From the ILP experiment, we measure the total ILP and the average ILP across all
benchmark to see how much, using explicit spill and fill instructions, affect the ILP. The total and
average ILP are calculated as follow:

ILPtotal = Σ(Inst. Exec.)benchmark / Σ(Cycle Exec.)benchmark (1)

ILPaverage = Σ(ILP)benchmark / #. of benchmark (2)

Although these two ILPs look similar, they actually measure different things. ILPtotal shows the
ILP if the set of benchmark is representative of all programs executing on the machine, whereas
the ILPaverage shows an unweighted average improvement. In other words, ILPtotal shows the



improvement if everyone runs all of the programs, and ILPaverage shows the improvement if each
person runs one of the program. Figure 3 shows the ILPtotal and ILPaverage under various instruc-
tion window sizes (32, 64, 128, and 256) with and without spill and fill instructions.

Figure 3. Total (a) and Average (b) ILP with 2-Cycle Load Latency and Different Disambiguation Policies

From Figure 3, we see that the total and average ILPs look very similar. This indicates that the
benchmarks used in our simulation give the correct mix of applications and we can expect about
22% increase in ILP when explicit spill and fill instructions are used. 

In addition to showing an improvement in ILP when spill and fill instructions are used, Figure 3
also illustrates a dramatic increase in ILP with the different disambiguation policies. This is
because with no disambiguation, there are many false dependencies on waiting stores. While with
load disambiguation only, the scheduling window tends to fill up with stores which limits the par-
allelism that can be utilized. Finally, the full disambiguation policy gives the full benefit of have
larger windows.

We now explore how varying the load latency affects ILP in our simulation. Figure 4 shows that
total ILP with only load disambiguation has the same trend across different load latencies. This
means that the maximum ILP is not very sensitive to small variations in load latencies. 

Figure 4. Total ILP with Load Disambiguation and Different Load Latencies

Finally, for our ILP simulation, we find that gcc is representative of the benchmarks that worked
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well with the explicit spill and fill instructions (i.e., gcc, li, perl, and vortex), and ijpeg of the oth-
ers (i.e., go, ijpeg, and m88ksim). Compress is unique in that it has no spills. Figure 5 shows the
ILP of gcc and ijpeg with and without spill instructions.

Figure 5. ILP for (a) gcc and (b) ijpeg with 2-Cycle Load Latency and Different Load Disambiguation Policies

Comparing the ILP with and without explicit spill and fill instructions shows that our proposed
technique improves ILP by 8-100% in the case of gcc and 5-11% in ijpeg. Overall, using these
explicit instructions increase the ILP by 22%.

We now look at the impact of using spill and fill on memory references by examining the data col-
lected from the Memory Reference experiment. First, we measure the number of spills between a
spill and fill pair. This gives an indication of how many available physical storage is needed if we
have to service the fills. Figure 6a plots the percent of all fills versus the number of spills between
a spill/fill pair. The figure shows that having a 64-entry register space for spilling only can capture
about 92-100% of all the outstanding spills. This means that we can potentially eliminate all of the
memory references used for spill code.

Figure 6. (a) Max. Number of Outstanding Spills between a Spill / Fill Pair 
(b)Number of Dynamic Instructions between a Spill / Fill Pair

Figure 6b plots the number of dynamic instructions between a spill/fill pair. From this figure we
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see that more than 85% of the spill will be filled within the next 1000 dynamic instructions. This
means that the spilled data is needed fairly soon, so the hardware should refrain from moving the
data to memory.

Having established that using the spill and fill instructions can potentially reduce the memory ref-
erences, we now examine how much impact these explicit instructions actually have. Figure 7a
plots the percentage of dynamic stores and loads that are converted to spills and fills. The percent-
age of spill ranges from 15% to 62%, and the percentage of fill ranges from 9% to 31%, with an
average of 35% and 19% for spill and fill, respectively. This measurement indicates that a signifi-
cant portion of the memory references are spill-code and can be eliminated. Originally, we
thought that all of the stack operations can be converted to spills and fills. However, Figure 7a
clearly indicates otherwise. 

Figure 7. (a) Spill and Fill Statistics (b) Load and Store Statistics 

To put the results from Figure 7a into perspective, the percentage of store and load in all of the
dynamic instructions is plotted in Figure 7b. The data shows an average of 12% stores and 35%
loads. These numbers indicates the memory reference reduction achieved by using spill and fill
instructions is significant.

4.0 Future Work

In this section, we will describe several hardware options for exploiting the new information pro-
vided by the explicit spill/fill instructions. First let us detail the new instructions and elaborate on
their properties:

spill Rx, spill_ptr   - spill a register to the memory location spill_ptr
fill Rx, spill_ptr     - fill a register from the location spill_ptr
setsip immediate   - set the spill_ptr to an immediate
incsip immediate   - increment/decrement the spill_ptr with a signed immediate

Since spills are generated and consumed by the compiler alone with no programmer intervention,
the spill space can be considered as part of the micro-architectural state which need not be visible.
This implies two things: a. spill stores do not necessarily reach memory and there is no guarantee

           (a)                               (b)
compress gcc go ijpeg li m88ksim perl vortex average toal

 0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

%
 o

f a
ll 

st
or

es
/lo

ad
s

SP stores
spills   
SP loads 
fills    

compress gcc go ijpeg li m88ksim perl vortex average toal
 0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

%
 o

f a
ll 

in
st

ru
ct

io
ns

stores
loads 



on the spill order for spills that do reach main memory, and b. all memory locations used for reg-
ister spills are inaccessible to user code.

The simplest implementation treats the new instructions as simple stores, loads, and register oper-
ations, where the spill pointer (SIP) can be either a state register or a general purpose register. The
only advantage of the new instructions in this scheme is that it provides memory disambiguation
between regular loads and stores, and their fill/spill memory operations (using property (b)).

More sophisticated implementations can take advantage of the new information inorder to prevent
spills from reaching memory, and possibly eliminate the execution of spills and fills altogether.
The basic mechanism required for this approach is a tracker which allows the processor to iden-
tify the spill/fill location at the frontend section. This device is similar to the one proposed in [4]
but simpler and more robust, since the SIP can only be modified in trackable ways.

A portion of the main memory can be allocated to store the necessary spills.  A register keeps the
pointer to the start of this part of memory.  This register should be a special purpose state register.
A general purpose register can also be used but this is going to affect the total number of general
purpose registers available for the processor and certain precautions must be taken as explained in
[4].  The address of the spill is calculated in the frontend using a dedicated ALU, with this register
as the base and adding an immediate value provided in the spill/fill instruction. Since the compiler
controls all accesses to this register using the strict syntax of the new instructions, all spill/fill ref-
erences can be accurately calculated in the frontend.

A direct method for avoiding spilling to memory is to re-use the physical register that was to be
spilled for the corresponding fill, based on the proposal in [5]. This is done by tagging the physi-
cal register with the current value of the SIP (the SIP is now a state register which is updated by
the frontend only). When a fill arrives, its SIP is looked-up in the physical register tags. If the
physical register that holds the spilled value has not been reclaimed a tag match occurs, and the
execution of the spill / fill is transferred to the frontend, without consuming regular execution
resources and memory bandwidth. The reclaiming of spilled physical registers can be delayed by
providing two free-lists to the renamer, a regular free-list and a low priority free-list that contains
spilled registers and is only used as a last resort. Once a spill is serviced (its corresponding
fill_kill has been processed) the physical register is untagged and transferred to the regular free-
list.

When a tagged physical register must be re-used for a new value, its current value must first be
spilled to memory. This is done in several steps:

1. Stalling the renamer (which is waiting to use the register) 
2. Injecting a regular store instruction of the register value to the location pointed to by the tag)
3. Restarting the renamer when a register becomes available on the regular free-list, either the 

injected store is executed or some other register is reclaimed.

This is illustrated by the pseudo code segment in Figure 8 that is modified from what is shown in
Figure 1.



1 use R1 P1

2 use R2 P2

3 spill R1 P1 -> Mem Tag P1

4 ld R1 Mem -> P3

5 use R2 P4

6 ld R1 Mem -> P1 P1  -> Mem
Mem -> P1

Untag P1

7 fill R1 Mem -> P2 Mem -> P2

Tag P2

Figure 8. Example Code

In this example, line 6 is pushed down to line 7, and in its place, a load instruction is added. This
greatly changes the dynamic behavior of the processor. First of all, we do not have enough physi-
cal registers to support the renaming of the ld instruction. As a result, a store must be injected to
save the contents of P1 to memory. Only after this injected store, can we load the data from mem-
ory into P1. In line7, we actually want to fill R1. This time, suppose we can rename the register to
P2. We then use a regular load instruction to load the data from memory to the physical register.

The most aggressive technique adds another level of register hierarchy -- a register cache. This
register cache is not part of the register name space seen by the renaming unit. Instead, only the
spill/fill controller can use it. This effectively adds more registers to spill to. Figure 6a suggests
that a 64-entry register file should capture a vast majority of the outstanding spills. The register-
cache is managed by the hardware, but can rely on compiler hints for which register to write to
memory when is is full. A compiler/profiler can provide information as to how soon a spilled reg-
ister will be consumed, thus lowering the number of spills that reach memory.

To support a register cache means must be provided for transferring a value from the cache to
memory. Since all SIP addresses are virtual, spills must go through full address generation and the
TLB before being sent to memory. A brute force approach is to provide a AGU unit and  a cache
port to the register cache. However, a more elegant solution is to inject a store when a value has to
be spilled. The problem now, is which physical register to use for the store. Two simple solutions
are: a. reserve at least one physical register for the sole purpose of handling actual spills, or b.
buffer the current physical register that is being renamed and temporarily use it to spill the value
from the cache (similar to the method described in the non-cache approach). A more complicated
scheme is to employ some sort of register stealing as proposed in [6].

This register-cache can be used as a novel and effective way of reducing the cost of the physical
register file. The number of compiler-visible registers can be reduced to the size of the lowest
level of the register hierarchy. Thus the compiler will generate spill / fill instructions for moving
registers into the higher hierarchies. In order to effectively manage the hierchiacal structure, com-
piler hints are provided as to which register should be spilled to a higher level. 
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5.0 Conclusion

We hypothesize that using an explicit spill and fill instructions to differentiate spilling and filling
from other store and load instruction increases ILP and improves memory bandwidth. This
hypothesis is proven through simulation using the SimpleScaler simulator running the SPECint95
benchmarks. With the explicit spill and fill instructions, we achieved an improvement of 22%
more ILP and an reduction of 35% stores and 19% loads, on average. We also find that adding a
64-entry second level registerfile that is dedicated for spilling can capture 92-100% of all the out-
standing spills, thus eliminating their memory references. 
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