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In this lecture, we discuss applications of di�erential geometry within the �eld of com-
puter graphics. We will see how concepts discussed in earlier lectures can be used to
solve problems involving the geometry of optics. Speci�cally, we will look at Fermat's
Principle, rays and wavefronts, and caustics.

1 Fermat's Principle

In geometrical optics, we assume that the wave-like behaviour of light is insigni�cant and
thus model the behaviour of light using rays. Light emitted from a point is assumed to
travel along such a ray through space. In an e�ort to explain the motion through space
taken by rays as they pass through various media, Fermat developed his Principle of

Least Action.

The path of a light ray connecting two points is the one for which the time
of transit, not the length, is a minimum.

At the time that Fermat developed this principle, his justi�cation was more mystical than
scienti�c. His justi�cation can be summarized by the statement that nature is essentially
lazy, and these rays are simply doing the least possible work.

We can however develop a more useful formulation of the principle. We know from earlier
lectures that the time along a curve through space can be calculated as

S(t) =
Z
dt =

Z
ds

ds=dt

We also know that ds=dt is velocity, which for light is know to be ds

dt
= c

�
where � is the

refractive index of the medium. Therefore, we have
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S(t) =
Z

ds
c

�(s)

=
1

c

Z
�(s)ds /

Z
�(s)ds

We can thus de�ne the optical path length from one point on a ray to another as the
geometric path length weighted by the refractive index of the media. Furthermore, we
can now restate Fermat's Principle as

Light travels along paths of stationary optical path length, where the opti-
cal path length is a local maximum or minimum with respect to any small
variation in the path.

Determining the path taken by a light ray between two points then becomes a simple
matter of optimizing S(t) between the points.

2 Applications of Fermat's Principle

We can make several observations as a result of Fermat's Principle which will prove useful
as we explore the realm of geometric optics:

1. In a homogenous medium, light rays are rectilinear. That is, within any medium
where the index of refraction is constant, light travels in a straight line.

2. The angle of reection o� of a surface is equal to the angle of incidence. This is
the Law of Reection.

We can also make some interesting and useful observations about conic surfaces. Conic
surfaces are particulary useful in mirror optics - for example, the design of telescopes.
We consider two conjugate points - two points that are perfect images of each other.
A salient property of these conjugate points is that the optical path length of all rays
connecting them is equal.

Consider a conic surface such as an ellipse. An ellipse is de�ned as the locus of all
points such that the sum of the distances from each point to two �xed points (the foci)
is constant, as in Figure 1. The two foci of a mirrored ellipse must then be optically
conjugate points. A point source located at one focus must be imaged perfectly at the
other focus.
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Figure 1: An ellipse. The ellipse is de�ned as the locus of all points such that the sum
of the distances from each point to two �xed points is constant: d1 + d2 = c.

In the case of a parabola, one focus has become in�nite. This can be interpreted by
saying that an aggregate of rays, parallel to one another and to the axis of a paraboloid
after being reected by the paraboloid, will pass through the focus of the paraboloid.
The Newtonian telescope leverages this fact in its design to collect and focus light from
distant objects.

In general, a conic surface can be thought of as having two foci and these foci will be
optically conjugate points. Figures 2 and 3 illustrate how this property of conic surfaces
and geometrical optics has been applied in the design of the Cassegrainian telescope and
the Gregorian telescope.

As a side note, a construction called a \Cartesian Oval" is similar to an ellipse, but has
weighted distances. That is, rather than being constrained by the equation d1 + d2 = c,
as in Figure 1, the oval is constrained by the equation n1d1 + n2d2 = c. The resulting
non-elliptical shape will nevertheless have two points of perfect focus.

3 Virtual Light Sources

We now turn our focus to virtual light sources. In traditional ray tracing, a visual ray
that encounters a reective surface is bounced o� of that surface and cast in the direction
of reection. Similarly, visual rays are refracted through volumes. Eventually these visual
rays reach a non-reecting surface and the shading calculation is calculated at this point
of intersection. This traditional model is depicted in Figure 4.

Although this traditional ray tracing model does allow us to simulate the e�ect of seeing
a scene through a reective or refractive surface, it does not extend to the simulation of
refracted or reected illumination. In other words, the shading calculation at the point
of intersection is limited to the direct components of illumination.
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Figure 2: The Cassegrainian telescope con�guration Point A is where the focus of the
paraboloid and the virtual focus of the hyperboloid coincide. Point B is the real focus of
the hyperboloid.

We can utilize di�erential geometry to allow us to solve this more complex problem -
determining the reected illumination at a point on a surface. To do this, we must cast
rays from light sources so that they will reect o� of the mirrored surfaces and intersect
the point being illuminated. When the light is reected o� the mirrored surfaces it is
possible that the light rays may diverge or converge depending on the curvature of the
reective surface at the point of reection. Thus there are two key problems that must
be solved - determining which light rays will intersect the point being illuminated and
calculating the proper irradiance at that point. The problem of reected illumination is
depicted in Figure 5.

Finding the paths from the light source to the point P that reect o� of the mirrored
surface is not as complex as might be assumed. A possible path from the light source to
the point P is depicted in Figure 5. The optical path length is

d(x) =
q
(s � x)2 +

q
(p� x)2
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Figure 3: The Gregorian telescope con�guration Point A is where the focus of the
paraboloid and one of the foci of the ellipsoid coincide. Point B is the other focus
of the ellipsoid.

According to Fermat's Principle, we want to optimize d(x) in order to determine the path
of the light rays. If the mirrored surface is de�ned by g(x) = 0 then we can optimize d(x)
subject to the constraint that x lie on the surface de�ned by g(x) using the technique of
Lagrange multipliers:

rd(x) + �rg(x) = 0

g(x) = 0

Solving these equations yields paths of locally extremal length.

Recall from our earlier discussion of conic �gures that the two focal points of an ellipse
are perfect images of each other - the optical path lengths of all reected rays connecting
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Figure 5: Reected Ilumination

them are equal. If we select s and p as our foci of a family of ellipsoids and vary the
optical path length, we get a family of confocal ellipsoids.

The system of equations produced by the Lagrange multipliers have a simple geometric
interpretation. The extremal points must not only lie on the surface de�ned by g(x) = 0,
but they must also lie on the surface of one of these confocal ellipsoids and the ellipsoid
must be tangent to the surface at the point of contact. Figure 6 depicts this geometric
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Figure 6: Osculating Ellipsoid

interpretation.

4 Rays and Wavefronts

In order to be able to compute the proper irradiance at a point being illuminated, we will
need to determine if the rays of light from the light source are converging or diverging
at the point. A given light will be the source of many rays, and the paths of the rays
emitted are determined by the following equation:

S =
Z
�(s)ds

We will de�ne a wavefront W to be the surface de�ned by the points on each ray at
a constant s. Alternatively, the wavefront can be described as the locus of points at a
given optical path length. We will not go into the details of wavefront properties, but one
important property that should be noted is that the wavefront surfaces are orthogonal
to the rays. You can think of wavefronts as isosurfaces in space.

This section is focused on intuitive concepts rather than formal derivations. In this entire
discussion, light sources are assumed to be point light sources, although similar concepts
and methods can be extended to the area light source case. Figure 7 depicts three simple
types of wavefronts: those emitted by a single local point light, those emitted by an
in�nitely distant point light and a set of converging wavefronts.
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Figure 7: Three di�erent wavefronts: (a) those emitted by a single local point light
source, (b) those emitted by an in�ntely distant point light and (c) a set of converging
wavefronts.

We are interested in the convergence and divergence of the rays because we need to be
able to calculate the intensity of the light at a point being illuminated, and the intensity
of the light can be shown to be equal to the radiant power of the light divided by the
wavefront area.

Intuitively, this makes sense. Consider a set of rays which represent light moving forward
over time, and two wavefronts de�ned by these rays at di�erent points in time. Further-
more, consider the two patches of area on these wavefronts, shown in Figure 8, which are
de�ned by this set of rays. The situation in the �gure is a divergent wavefront, so the
area dA0 is greater than the area of dA. If the wavefront were converging, the opposite
would hold.

We can think of these two patches of area as the ends of a tube containing the set of rays.
Although the area of the two patches is di�erent, the total power transmitted through
the tube is a constant. Thus the intensity, which can be thought of as the number of
rays per unit area, decreases as it passes through the tube. Note again that the intensity
would increase in the case of a convergent wavefront.

We can formalize this intuition. We consider the general situation of the neighborhood
of a point on a rectilinear ray. There is some orientation of a cutting plane at this point
that will yield the maximum radius of curvature r1, and another orientation of a di�erent
cutting plane which will yield the minimumradius of curvature r2. Furthermore, we know
the planes associated with these two radii of curvature are orthogonal from our earlier
lectures on di�erential geometry. These radii of curvature are depicted in Figure 8.

Let dA be this element of area on the wavefront. All rays passing through dA will
intersect some subsequent wavefront with area dA0. Let d�1, d�2 be the elements of angle
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Figure 8: A ray and two small patches of area, dA and dA0 on two wavefronts associated
with the ray. For small enough patches, the area of the patch is de�ned by the radi of
curvature and the angle subtended at the center of curvatures as dA = r1d�1r2d�2.

subtended at the centers of curvature by these point areas. Because of the conservation
of energy, we must have

d� = I 0dA0 = IdA

where d� is power and I is intensity. Therefore

I

I 0
=

dA

dA0
=

r1r2d�1d�2
r01r

0

2d�1d�2
=

r1r2
r01r

0

2

=
�0

�

This illustrates the important point that the intensity is not only related to the area of
the wavefront, but also to the inverse of the Gaussian curvature of the wavefront.

We know also that as a wavefront evolves forward according to the principles of optics,
that the new wavefront will be an o�set surface from the original wavefront. Thus, if the
wavefront is diverging we can express the new radii of curvature as

r01 = r1 + d

r02 = r2 + d
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Alternatively, if the wavefront is converging, we can express the radii of curvature as

r01 = r1 � d

r02 = r2 � d

Since intensity is inversely proportional to the radi of curvature, this means that at some
point there must be in�nite brightness. This point of in�nite brightness is called a caustic,
from the dimunitive form of the Greek word for \burning iron".

The caustic is thus the evolute, the locus of the centers of curvature. In the three dimen-
sional case, there will be two caustic surfaces, one for each of the principal directions of
curvature. What we colloqially call \caustics" are the curves formed by the intersections
of these surfaces with a ground plane or object.

5 Orthotomics

We have seen from above that when a wavefront converges, a caustic is created. We are
interested speci�cally in the case where a point light source shines upon a curved reector,
and the reected light converges to a caustic. The orthotomic curve is an intermediate
curve that we will use to �nd the caustics in this reected case.

Because of the complexities of the three dimensional case, where the caustic is a curve
and there are two caustic surfaces, we will focus our discussion on the orthotomic in the
two dimensional case.

We will construct the orthotomic for an arbitrary light source and reective surface. In
doing so, we will show that the orthotomic corresponds to the reected wavefront.

We construct the orthotomic as follows. Given a source s and a curve c, pick a point x
on the curve and �nd its tangent. Then the locus of reections of s about such tangents
form the orthotomic curve, also known as the secondary caustic. This construction is
depicted in Figure 9.

We now explain the construction of the orthotomic more rigorously. In this explanation,
let n be the normal to the curve at point x and t be the tangent. Let x be the vector
from s to the point x.

We know that if we reect x about the tangent at x, this will de�ne the point:
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Figure 9: Construction of the Orthotomic Curve

y = 2[x � n]n

Looking at Figure 9 we can understand the formula for the point y. When we reect the
vector x across the tangent to the curve at x, it de�nes this new point. We can then
note that the projection of x onto the normal n multiplied by 2 also gives us this same
point. We must multiply by two to account for the fact that we have reected the vector
x across the tangent. To �nd y0 we simply di�erentiate:

y0 = 2[x0 � n]n+ 2[x � n0]n+ 2[x � n]n0

= 2[t � n]n� 2�[x � t]n� 2�[x � n]t

= �2�[(x � t)n+ (x � n)t]

/ (x � t)n+ (x � n)t

We use identities from the previous lectures: t � n = 0, n0 = ��t, x0 = t.

Consider the vector [y � x]. We would like to show that the normal to the orthotomic
curve at the point y lies in the same direction as this vector. The normal at the point y
must be perpendiculer to the tangent at y (which we will call ty). If the vector r (which
is the reection of x across the tangent to the curve at x) is in the same direction, it too
must be perpendiculer to ty. Since ty = y0, it is su�cient to show that [y� x] � y0 = 0:
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[y� x] � y0 / [y� x] � [(x � t)n+ (x � n)t]

= y � [(x � t)n� (x � n)t]� x � [(x � t)n� (x � n)t]

= (x � t)(n � y)� (x � n)(t � y)� (x � t)(x � n) + (x � n)(t � x)

= (x � t)(n � 2(x � n)n)� (x � n)(t � 2(x � n)n)

= 2(x � t)(n � n)(x � n)� 2(x � t)(n � n)(x � n)

= 0

We know that the normal to the point y must be perpendicular to the tangent at y,
which we calculated above. Since the dot product of the vector [y� x] with this tangent
is zero, this vector must lie in the same direction as the normal at y. Furthermore, from
the �gure and the law of congruent triangles, we can see that the reected light ray r

from the source must also travel in the direction of [y � x].

Therefore the normal to the orthotomic at y is along the direction of r and passes through
x. In more detail, light from s is reected by the curve at x, according to the the Law
of Reection. Thus the incident ray and the reected ray make equal angles on opposite
sides of the normal to x. By congruent triangles, the reected ray is along the line from
y to x. From above, this is the normal to y.

It follows then that light rays having the orthotomic as their intial wavefront (i.e light
rays starting simultaneously at all points on the orthotomic and then propagating down
the normals) are the same as light incident from s and reected by x. Thus the caustic
by reection of s is the caustic of the orthotomic.

Now, let's sum up intuitively what we have just formally explained. Given a light source
and a curved reector, we want to be able to �nd the caustics that would be formed. An
easy way to compute these caustics is to use the orthotomic curve. The orthotomic curve
has the property that its wavefronts will evolve to the same caustics as the wavefronts
from the true light source will after being reected.

6 The Gauss Map

Every point on a surface has some normal n(u; v). The Gauss map is a mapping of every
point on a surface to the point on the unit sphere with the same normal. This map is not
one-to-one. Figure 10 shows an intuitive sketch of this construction for a small portion
of the gauss map. The 3D case is too complicated to draw, so we show the 2D analog.
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Figure 10: Construction of the Gauss map: the multiple normals on the original surface
that are in the same direction as the vector N map to the single point on the unit sphere
with normal in the direction of N . When the multiplicty of points being mapped to a
single point on the unit sphere is greater than one, folds develop in the Gauss map.

The resulting Gauss map may have folds. These folds correspond to inection points on
the original surface, that is, the bottom of a concave valley, the top of a convex hill or
a saddle point. At these points, the map which we are tracing out on the unit sphere
changes direction because of the change in curvature at the inection point on the original
surface. If the original surface is smooth, the Gauss map will be continuous.

Consider a small patch of area S on the original surface. There will be a corresponding
area patch w on the Gauss map. The Gaussian curvature is the di�erential ratio of the
two areas: � = limS!0

S

w
.

We can formally de�ne the Gauss map:

G(x(u; v)) = f(u; v)

as a map G : s = S2 from the surface patch S to the unit sphere S2.

When we are dealing with in�nitely distant point light sources, the Gauss map can be
used to tell how many virtual lights will be created by a reective surface. Consider
Figure 11. For every position of the viewer and the light source there is a vector H:

H =
L+ E

jL+ Ej
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Figure 11: Specularities The number of virtual lights is the multiplicity of the points on
the Gauss map with normal equal to H.

The number of virtual lights created by a reective surface is the multiplicity of points
on the Gauss map with normal equal to H, that is how many layers exist on the Gauss
map.

We are thus interested in the folds created on the Gauss Sphere when the mapping is
performed. When the reective object is deformed or moved, the virtual lights on its
surface move, and may be created or destroyed. This creation or destruction of virtual
lights occurs at the parabolic points on the Gauss map.

7 Implementation Issues

When trying to implement shading calculations using virtual lights, we can utilize some
of the properties we have learned to optimize our calculation. A brief overview of the
techniques that can be used when implementing virtual lights is provided here. For a
more detailed exposition, see [1].

Most importantly, we can leverage the observation made above that the intensity of light
is proportional to the Gaussian curvature of the wavefront associated with that point.
Thus, rather than keep track of all of the geometry associated with the wavefronts we
can simply track the Gaussian curvature as the wavefronts evolve forward.

Propogating curvature through free space is trivial - we just need to add distance to the
radius of curvature. The di�culty lies in e�ciently calculating the change in curvature
that occurs when the wavefront is reected o� a curved reector.



CS448: Lecture #20 15

We derive the equations necessary to calculate the reected curvature. Recall the equa-
tion giving the directions of the reected ray:

n(r) = n(i) + 2 cos in(s)

In these equations, n(i) and n(s) are the normals to the incident wavefront and surface
respectively; n(r) is the normal to the reected wavefronts. i is the angle of incidence of
the rays.

We calculate the vector u = n(i)�n(s). This vector must be tangent to both the incident
wavefront and the surface since it is perpendicular to both normals. We can calculate
the curvatures of the incident wavefront in the direction of u by rotating the principal
curvatures using the angle between u and the line of curvatures and Euler's Formula. The
curvatures of the surface in this direction can be computed using the curvature tensor of
the surface.

The curvatures of the new wavefronts are computed by taking the directional dervvatives
of n(r) in the direction u. These derivatives can be computed from the formulae for the
reected vectors and the directional derivatives of the normals on the incident wavefront
and the surface.

For reection:

�(r)
u = �(i)

u + 2 cos i�(s)
u

�(r)
uv = ��(i)

uv � 2�(s)
uv

�(r)
v = �(i)

v + (2= cos i)�(s)
v

For refraction:

�(t)
u = ��(i)

u + �(s)
u

�(t)
uv = ��(i)

uv + (cos i= cos t)�(s)
uv

�(t)
v = ��(i)

v + (cos i= cos t)2�(s)
v

Remember that the curvature of a plane is 0. Therefore, the curvatures of an outgoing
wavefront reected from a planar surface will be the same as the incoming wavefront
(the fact that �uv switches sign is a result of the change in orientation of the coordinate
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system due to reection). This is as expected, since a perfectly reected wave does
not change its shape. Note also that a planar wavefront incident onto a a reecting
surface essentially inherits the curvature of the surface. Thus if the surface is convex,
the reected wavefront will be diverging; whereas if the surface is concave, the wavefront
will be converging, eventually forming a caustic.
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