Globally Adaptive Load-Balanced Routing on Tori

Arjun Singh, William J Dally, Brian Towles, and Amit K Gupta
Computer Systems Laboratory, Stanford University
{arjuns, billd, agupta, btowles} @cva.stanford.edu

Abstract— We introduce a new method of adaptive routing
on k-ary n-cubes, Globally Adaptive Load-Balance (GAL). GAL
makes global routing decisions using global information. In
contrast, most previous adaptive routing algorithms make local
routing decisions using local information (typically channel queue
depth). GAL senses global congestion using segmented injection
queues to decide the directions to route in each dimension. It
further load balances the network by routing in the selected
directions adaptively. Using global information, GAL achieves
the performance (latency and throughput) of minimal adaptive
routing on benign traffic patterns and performs as well as the
best obliviously load-balanced routing algorithm (GOAL) on
adversarial traffic.

I. INTRODUCTION

I nterconnection networks are widely used for processor-
memory interconnect [7], for 1/O interconnect, and as
switch and router fabrics [3]. Torus, or k-ary n-cube [2],
topologies are very popular in all of these applications. Torus
networks have high path diversity, offering many alternative
paths between a source and destination node which a routing
algorithm must choose from.

In this paper we introduce Globally Adaptive Load-Balance
(GAL) — a non-minimal, adaptive routing algorithm for torus
networks that adapts globally to balance load across minimal
and non-minimal paths. At low traffic rates, when there is
no congestion, GAL routes all traffic along minimal paths
— giving minimum latency. For adversarial patterns, at high
traffic rates, GAL senses congestion in the minimal quadrants,
and only when this congestion occurs routes non-minimally.
Only the minimum amount of traffic needed to maintain the
minimal quadrant on the edge of congestion is routed non-
minimally. At saturation, the queues for all quadrants are
balanced — balancing load across the quadrants and hence
providing maximum throughput.

TABLE |
REPORT CARD FOR FOUR ADAPTIVE ROUTING ALGORITHMS

| [CHAOS [MINAD | GOAL | GAL |
OnNN 4.0 (A) 4.0(A) |1 233(C) | 40@A)
O®tor | 0.36 (C) | 0.33(C) | 0.53 (A) | 0.53 (A)
O.vg | 055 (C) | 0.63(B) | 0.67(A) | 0.73 (A)
Lat 4.4(A) 4.4(A) 6.2(C) 4.4 (A)
Stab No (F) Yes (P) Yes (P) Yes (P)

Table | compares GAL to three previously reported adaptive
routing algorithms on three throughput (®) measures, low-load

Manuscript submitted: 17 Feb. 2004. Manuscript accepted: 17 Mar. 2004.
Final manuscript received: 29 Mar. 2004.

latency, and stability. On benign traffic patterns (represented
by nearest neighbor), GAL’s minimal injection queues remain
below threshold. Thus, GAL routes all benign traffic minimally
and matches the high throughput (@ xn) and low load latency
(Lat)! of minimal algorithms (which all receive an “A” grade)
while GOAL gives somewhat lower (“C”) performance. On
hard traffic patterns (represented by tornado) operating near
saturation, GAL’s global adaptation matches the ideal load
balance of GOAL. Thus, both achieve highest throughput
(©Tor) oOn these patterns (“A’s). Minimal algorithms achieve
only 62% of this peak throughput (“C”). GAL’s ability to
route minimally when able, yet to load balance when required
gives the best observed performance on average permutations
(Oavg). Finally, all algorithms except CHAOS are stable and
get a passing grade “P” on stability. We discuss the stability
of GAL in Section V.

Il. PREVIOUS ADAPTIVE ROUTING ALGORITHMS

The shortcomings of previous adaptive routing algorithms
are illustrated by considering routing nearest-neighbor and
tornado traffic on an 8 node ring network. For the benign
nearest neighbor (NN) traffic pattern, all traffic from node 7
is distributed equally amongst its neighboring nodes (half to
node ¢ — 1 and half to node 4 + 1). Assuming unit bandwidth
channels, each node can inject traffic at an optimal rate of
2 packets per cycle (throughput, ® = 2) if traffic is simply
routed along minimal paths. For the difficult tornado (TOR)
traffic pattern, all traffic from node 7 is sent nearly half-way-
around the ring, to node i + 3. Optimal routing for TOR
requires some traffic to be sent non-minimally as shown in
Figure 1(a). The ideal throughput for tornado is ©® = 8/15.

L’r:.et:::j

@ ®
Fig. 1. (a) Optimally routed tornado traffic in an 8 node ring. Load is shown
for two links depicted in dotted lines. The dashed (solid) lines contribute a
link load of 2 (2). All links are equally loaded with load = 2. (b) Minimally
routed tornago traffic. Clockwise (counter clockwise) link load is 3 (0).

Globally oblivious algorithms such as GOAL [8] optimally
load balance difficult traffic patterns such as TOR, achieving
optimal throughput on such patterns. Unfortunately, this is
done at the expense of benign traffic patterns such as NN.
GOAL has high latency and achieves a throughput of only

1The latency numbers are in cycles for uniform random traffic at 0.2
injection load on an 8 x 8 torus.

© = 8/7 (57.2% of ideal) on NN. This tradeoff between
locality (performance on benign patterns) and load balance
(worst-case throughput) is inherent to oblivious routing algo-
rithms [10], and, therefore, no oblivious balancing strategy
performs optimally on both benign and difficult patterns.

Minimal adaptive routing algorithms (MADs) [4], [6], give
optimal performance on NN traffic, but give poor throughput
© = 1/3 (62.3% of ideal) on TOR (Figure 1(b)). Achieving
good performance on hard patterns like TOR requires routing
some traffic non-minimally (the long way around the ring) to
balance load.

Most previously reported non-minimal routing algorithms
(NMADs) [1], [9] base their adaptive decisions on local
congestion information. For example, in Chaotic routing [1]
(CHAOS), packets always choose a minimal direction, if
available. On the 8-ring, CHAOS performs optimally on NN
(6 = 2), but falls far short of ideal (6 = 0.36) on TOR.
CHAOS can misroute a single packet several times, alternating
its path between both the clockwise and counterclockwise di-
rections. While techniques can be employed to limit excessive
misrouting [9], the fundamental shortcoming of such non-
minimal adaptive routing algorithms still exists — they attempt
to solve a global problem by making local decisions.

The DRB algorithm [5] is the only non-minimal algorithm
we know of that senses global congestion and expands paths
to incorporate non-minimal ones when the latency of minimal
paths exceeds a threshold. However, it uses explicit notification
packets to enable the source node to sense global congestion,
which potentially wastes network bandwidth. In contrast,
our work relies on implicit network backpressure to transfer
congestion information back to the source nodes.

I1l. GAL: GLOBALLY ADAPTIVE LOAD-BALANCED
ROUTING

A. GAL ina Ring

GAL senses global congestion using, at each source, a set of
injection queues for each destination.? Each set has two queues
- minimal and non-minimal. When a packet is received from
the network interface, it is enqueued in the minimal queue for
the packet’s destination if that queue’s length is less than a
threshold, T, otherwise it is enqueued in the shorter of the
two queues.®

GAL always routes NN traffic minimally, since the threshold
of the minimal queue is never reached. As illustrated in
Figure 2, GAL also routes TOR traffic minimally at low
loads. Only when the minimal channels become saturated,
at a load of 0.33 does the minimal queue length exceed the
threshold. At this point, GAL starts to route some traffic non-
minimally. As the load is increased, GAL routes progressively
more traffic non-minimally. At saturation, the load is exactly
balanced with 5/8 of the traffic routing minimally and 3/8
non-minimally. Thus, by making the global routing decision
(minimal or non-minimal) using global congestion information

2In Section V we show that GAL can be implemented with just two sets
of injection queues at each source.

3In order to stabilize GAL for all traffic patterns, we need to adaptively
vary the threshold value which we discuss in Section V

(sensed by the injection queues) GAL is able to achieve
optimal performance on both benign (NN) and difficult (TOR)
traffic patterns, something no previously published routing
algorithm has achieved.

—+— Accepted Throughput (Minimal)
0.6 { —*Total Accepted Throughput

Accepted throughput (Non-minimal)

o o
= o

o
@

o
N
|

o
=

Accepted Steady state throughput

o

0 0.1 02 03 04 05 06
Offered Load

Fig. 2. GAL on tornado traffic on an 8 node ring

B. GAL Routing in Higher Dimension Torus Networks

In a torus with n dimensions, we divide the sets of possible
routes from a source s to a destination d into 2™ quadrants,
one for each combination of directions (one direction per
dimension). For a 2 dimension network, there are 4 quadrants
(++, +—, —+ and ——) for each source-destination pair.
GAL provides a separate injection queue for each quadrant.
Figure 3(a) shows the 4 quadrants for the source-destination
pair (0,0),(2,3). Quadrant I is the minimal quadrant while
the others are non-minimal.

D Quadrant IV (-1,-1)
D Quadrant I (+1,-1)
1 Quadrant 11 (-1,+1)
D B quadrant 1 (+1+1) D

n v

Ay

S
FIRCE)

x L

@ (b)

Fig. 3. (a) Quadrants in a k-ary 2-cube for a given source S (0,0) and
destination D (2,3). (b) Example routes from S (0,0) to D (2,3) through the
minimal quadrant 1(+1,+1) and a non-minimal quadrant I1(-1,+1).

For a 2-D network, there are S = k? sets, each set
comprising 4 injection queues. When a packet is received
from the source queue, its set is determined by its destination.
Within that set, one injection queue (and therefore the quadrant
to route in) is selected as follows: the queue associated with
the quadrant having the smallest distance from the source to
the destination whose occupancy is less than a threshold, T, is
chosen. If all the queues have surpassed their threshold, then
the shortest queue is selected.

Once the quadrant is selected, the packet is routed adap-
tively within that quadrant. A dimension ¢ is productive if,
the coordinate of the current node z; differs from d;. In other
words, it is productive to move in that dimension since the
packet is not already at the destination coordinate. At each hop,
the router picks the productive dimension with the shortest

output queue to advance the packet. Two possible routes from
s = (0,0) to d = (2,3) are shown in bold and dashed as
examples of routing in quadrants | and II.

C. Virtual Channels and Deadlock

Our implementation of GAL requires 3 virtual channels
(VCs) per unidirectional physical channel to achieve deadlock
freedom in the network. This is an extension of the scheme
proposed in the x-channels algorithm [6] for wormhole flow
control developed for the non-minimal GOAL algorithm. For
a proof of deadlock freedom for the scheme, refer to [8].

IV. PERFORMANCE EVALUATION

In this section we compare the performance of the four
routing algorithms described in Table Il based on the figures
of merit introduced in Section 1.

TABLE 1l
THE ROUTING ALGORITHMS EVALUATED IN THIS PAPER

[Name [Description |

CHAOS The Chaos routing algorithm [1].

MIN AD | Minimal Adaptive (or the x-channels algorithm) - route in
the minimal quadrant, routing adaptively within it [6].

GOAL Globally Oblivious Adaptive Locally - choose a quadrant
Q to route in according to a weighted probability distri-
bution, then route within Q adaptively [8].

GAL Globally Adaptive Load-Balance - Adaptively choose a
quadrant Q to route in at the source node by sensing global
congestion, then route within Q adaptively.

A. Experimental Setup

Measurements in this section have been made on a cycle-
accurate network simulator in which the routing decision takes
one cycle. Each node has an infinite source queue to model
the network interface. For GAL, each node also has S = 64
sets of injection queues for an 8 x 8 torus. Each set has
4 injection queues (with 128 flits each) corresponding to
each of the 4 quadrants. The threshold value, 7', for GAL
is kept at 2 flits for each minimal injection queue. The total
buffer resources are held constant across all algorithms. All
contention is resolved using age-based arbitration. All latency
numbers presented are measured since the time of birth of
the packets and include the time spent by the packets in the
source queues. We have simulated an 8-ary 2-cube and a 16-
ary 2-cube, but present only the results for the 8-ary 2-cube
topology due to space constraints. The results obtained for the
16-ary 2-cube topology follow the same trends. Finally, each
packet is assumed to be one flit long to separate the routing
algorithm study from flow control issues.

B. Throughput on Benign and Hard Traffic

Figure 4 shows the saturation throughput (normalized to
throughput on uniformly random traffic) for each algorithm
on each traffic pattern of Table 111. Two benign traffic patterns
are shown in Figure 4(a) while four adversarial patterns are
shown in Figure 4(b) with an expanded vertical scale. The
figure shows that GAL is the only algorithm that gives best

TABLE llI
TRAFFIC PATTERNS FOR EVALUATION OF ROUTING ALGORITHMS

[Name | Description |

NN Nearest Neighbor - each node sends to one of its four neighbors
with probability 0.25 each.

UR Uniform Random - each packet is sent to a random destination.

BC Bit Complement - (z,y) sendsto (k —z — 1,k —y — 1).

TP Transpose - (z,y) sends to (y, z).

TOR Tornado - (x,y) sends to (z + £ —1,9).

wC Worst-case - the traffic pattern that gives the lowest throughput
by achieving the maximum load on a single link.

mBC TP OTOR owc

Throughp

Saturation Throughput

os
0
or
2 06
€os
5 04
0
o1
o

cHAos MINAD GOAL cHAos MIN AD. GOoAL GAL

(@ (b)

Fig. 4. Saturation throughput of five algorithms on an 8-ary 2-cube for (a)
two benign traffic patterns and (b) four adversarial traffic patterns.

performance on both the benign and the adversarial traffic. It
becomes a GOAL-like load balancing algorithm and matches
the throughput of GOAL on adversarial traffic. At the same
time it behaves minimally on benign patterns and matches the
performance of MIN AD on them.

C. Throughput on Random Permutations

In order to evaluate the performance of the algorithms for
the average traffic pattern, we measured the performance of
each algorithm on 1,000 random permutations.* We compare
the performance of each algorithm against the ideal case
evaluated by solving a maximum concurrent flow problem over
each traffic pattern.

M Best Throughput

il

CHAOS MIN AD GOAL GAL

B Avg Throughput OWorst Throughput

Saturation Throughput
o
>

IDEAL

Fig. 5. Throughput on 1000 random traffic permutations

The figure shows that over the 1,000 permutations, GAL
has top performance in the best, average and worst-case
throughput — exceeding the worst-case throughput of GOAL
and achieving 98% of the ideal worst-case throughput for

4These 10> permutations are selected from the N! = k™! possible
permutations on an N-node k-ary n-cube.

this sampling. GAL gives 89% average throughput compared
to ideal. Part of this gap is because the ideal throughput
is evaluated assuming ideal flow control while GAL uses a
realistic flow control mechanism.

V. DISCUSSION
A. Sability

GAL requires an adaptive threshold 7' to achieve stability
on benign traffic patterns. Without an adaptive threshold,
congestion caused by load imbalance cannot be distinguished
from congestion caused by saturation. On UR traffic at loads
in excess of saturation, for example, the minimal injection
queue will exceed T" and some traffic will start to be misrouted
incorrectly. This misrouted traffic increases channel load, and
hence reduces throughput.

Such misrouting of benign traffic patterns can be avoided
by adapting the threshold T'. T" is incremented (decremented)
whenever the total number of packets departing from all
queues in a set decreases (increases or stays level) over a
window of time. This adaptation method senses the drop in
throughput caused by incorrectly misrouting a benign pattern
at high load and increases the threshold to prevent such
misrouting. When the load drops the threshold returns to its
original value.

B. Subsetting the Injection Queues

GAL can be implemented with a much smaller number
of queues without sacrificing significant performance. Rather
than provide a separate set of queues for each destination,
we group destinations together, providing a separate set of
queues for each group of destinations. In Figure 6 we compare
the performance of three groupings to the full 64 sets of
queues: 1 set — all destinations are grouped together, 2 sets
— far destinations (farther than /4 in any dimension), and
near destinations, 4 sets — grouped by minimal direction.
We evaluate performance on mixes of traffic patterns (since
a permutation would get ideal performance with a single set
of queues). The figure shows that two sets almost matches the
ideal performance. For the NN/TOR mix, near/far partitioning
exactly separates the two traffic patterns. Even for the UR/TOR
mix, where near/far cannot exactly separate the two traffic
patterns, two sets still does quite well. All results are identical
for permutation traffic and for the evenly balanced NN
and UR patterns. Hence, with only 2 sets, GAL achieves
performance matching that of 64 sets.

V1. CONCLUSION

Globally-Adaptive Load-Balanced Routing (GAL) is a new
routing algorithm for k-ary n-cube networks that adapts glob-
ally by sensing global congestion using injection queues at the
source node. At low loads and on benign traffic patterns, GAL
routes all traffic minimally and thus matches the low latency
and high throughput of minimal routing algorithms on such
‘friendly’ traffic. On adversarial traffic patterns, GAL routes
minimally at low loads and then switches to non-minimal
routing as congestion is detected by the injection queues.

W1 Set W2 Sets (Near Far) 04 Sets 064 Sets

Saturation Throughput

0.5NN + 0.5 TOR 0.3NN+0.7 TOR 0.5UR+0.5TOR 0.3UR+0.7 TOR

Fig. 6. Sub-setting the injection queue sets.

At saturation, GAL matches the throughput of load-balanced
oblivious routing. GAL combines the best features of minimal
algorithms (low latency at low load) and obliviously load
balanced algorithms (high saturation throughput on adversarial
patterns).

Unlike oblivious algorithms, adaptive routing algorithms are
characterized by both a steady-state and a transient response.
The transient response of GAL depends not only on the
routing algorithm, but also on the details of per-channel flow
control. In particular, short per-node queues that give stiff
backpressure give more rapid response to traffic transients.
Fully characterizing the transient response of GAL and other
adaptive routing algorithms remains an open question.

ACKNOWLEDGMENT

We would like to thank Steve Scott of Cray Inc. for
suggesting an improvement to our algorithm.

REFERENCES

[1] K. Bolding, M. L. Fulgham, and L. Snyder, “The case for chaotic
adaptive routing,” |EEE Transactions on Computers, vol. 46, no. 12,
pp. 1281-1291, 1997.

[2] W. J. Dally, “Performance analysis of k-ary n-cube interconnection
networks,” |EEE Transactions on Computers, vol. 39, no. 6, 1990.

[3] W. J. Dally, P. Carvey, and L. Dennison, “Architecture of the Avici
terabit switch/router,” in Proceedings of Hot Interconnects Symposium
VI, August 1998, pp. 41-50.

[4] J. Duato, “A new theory of deadlock-free adaptive routing in wormhole
networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 4, no. 12, pp. 1320-1331, 1993.

[5] D. Franco, I. Garces, and E. Luque, “A new method to make com-
munication latency uniform: Distributed routing balancing,” in ACM
International Conference on Supercomputing (ICS), Greece, 1999.

[6] L. Gravano, G. Pifarre, G. Pifarre, P. Berman, and J. Sanz, “Adaptive
deadlock- and livelock-free routing with all minimal paths in torus
networks.” IEEE Transactions on Parallel and Distributed Systems,
vol. 5, no. 12, pp. 1233-1252, Dec. 1994.

[7]1 S. Scott and G. Thorson, “The cray t3e network: adaptive routing in
a high performance 3d torus,” in Proceedings of Hot Interconnects
Symposium |V, Aug. 1996.

[8] A. Singh, W. J. Dally, A. K. Gupta, and B. Towles, “GOAL: A load-
balanced adaptive routing algorithm for torus networks,” in Proc. 30th
Annual International Symposium on Computer Architecture |SCA'03,
San Diego, California, 2003.

[9] M. S. Thottethodi, A. R. Lebeck, and S. S. Mukherjee, “BLAM: A
high-performance routing algorithm for virtual cut-through networks,” in
International Parallel and Distributed Processing Symposium (IPDPS),
Nice, France, April 2003.

[10] B. Towles and W. J. Dally, “Throughput-centric routing algorithm
design,” in Proceedings of the ACM Symposium on Parallel Algorithms
and Architectures (SPAA), San Diego, California, June 2003.

