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ABSTRACT

This paper introduces a new adaptive method, Channel Queue
Routing (CQR), for load-balanced routing on k-ary n-cube
interconnection networks. CQR estimates global conges-
tion in the network from its channel queues while relying
on the implicit network backpressure to transfer congestion
information to these queues. It uses this estimate to de-
cide the directions to route in each dimension. It further
load balances the network by routing in the selected direc-
tions adaptively. The only other algorithm that uses global
congestion in its routing decision is the Globally Adaptive
Load-Balance (GAL) algorithm introduced in [13]. GAL
performs better than any other known routing algorithm on
a wide variety of throughput and latency metrics. However,
there are four serious issues with GAL. First, it has very
high latency once it starts routing traffic non-minimally.
Second, it is slow to adapt to changes in traffic. Third,
it requires a complex method to achieve stability. Finally,
it is complex to implement. These issues are all related to
GAL’s use of injection queue length to infer global conges-
tion. CQR uses channel queues rather than injection queues
to estimate global congestion. In doing so, it overcomes
the limitations of GAL described above while matching its
high performance on all the performance metrics described
in [13]. CQR gives much lower latency than GAL at loads
where non-minimal routing is required. It adapts rapidly to
changes in traffic, is unconditionally stable, and is simple to
implement.
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1. INTRODUCTION

Interconnection networks are widely used for processor-
memory interconnect [10], for I/O interconnect [9], and as
switch and router fabrics [3]. Torus, or k-ary n-cube [2],
topologies are very popular in all of these applications. Torus
networks have high path diversity, offering many alternative
paths between a source and destination node which a rout-
ing algorithm must choose from.

A good routing algorithm must balance the conflicting
constraints of locality and load balance. To achieve mini-
mum latency on local traffic patterns (e.g., nearest-neighbor),
a routing algorithm must exploit locality - routing pack-
ets over a minimum-length path. On the other hand, on
difficult patterns (e.g., tornado - see below) at high loads,
the routing algorithm must balance load by routing some
traffic over longer, non-minimal, paths to achieve maximum
throughput.

To get optimal performance, the decision on how to route
a packet depends on the load caused by other traffic. For
example, with tornado traffic at low loads all packets should
be routed minimally to give low latency, while at high traf-
fic, some traffic must be routed non-minimally to balance
load. Thus, to give best performance, the global routing
decision must be adaptive. An oblivious routing algorithm
[15, 12] is unable to base its decision on other load in the
network. Moreover, to balance load, this adaptive decision
must be global in nature - choosing between minimal and
non-minimal routes - not just choosing between channels to
fine-tune a route.

The GAL (Globally Adaptive Load-balanced) routing al-
gorithm, introduced in [13], provides this global adaptivity
by basing the routing decision on the length of injection
queues associated with sets of destinations. GAL provides
near-optimal throughput - matching the throughput of min-
imal algorithms on local patterns and of load-balanced al-
gorithms on difficult patterns. GAL is the only known algo-
rithm that performs best on a wide range of throughput and



latency metrics. However, there are four serious issues with
GAL. First, it has very high latency once it starts routing
traffic non-minimally. Second, it is slow to adapt to changes
in traffic. Third, it requires a complex method to achieve
stability. Finally, it is complex to implement. These issues
are all related to GAL’s use of injection queue length to infer
global congestion.

This paper introduces channel queue routing (CQR. - pro-
nounced “seeker”) which matches the ability of GAL to
achieve high throughput on both local and difficult patterns
but overcomes the limitations of GAL. CQR gives much
lower latency than GAL at loads where non-minimal rout-
ing is required. It adapts rapidly to changes in traffic, is
unconditionally stable, and is simple to implement.

CQR overcomes the limitations of GAL by using chan-
nel queues rather than injection queues to estimate global
congestion. CQR estimates the congestion of a quadrant
by the sum of the lengths of the channel queues leading to
that quadrant. For each packet, CQR chooses the quad-
rant (minimal or non-minimal) based on these estimates of
quadarant congestion - with a threshold to bias the choice
toward shorter paths. Once a quadrant is selected, mini-
mal adaptive routing is used to select the path within the
quadrant to deliver the packet to its destination.

The remainder of this paper describes CQR in more detail.
In Section 2 we motivate the need to balance locality and
load balancing by considering the model problem of routing
tornado traffic on a ring. A simple approximate queueing
model shows the behavior needed to minimize latency. We
then show that GAL has much higher latency on this model
problem because it routes too much traffic minimally at high
loads. We introduce CQR routing in Section 3 and show that
it closely matches the optimal profile on our model problem.
In Section 4 we show via a series of experiments that CQR
has much better latency, stability, and transient response
time than GAL.

2. MOTIVATION: ROUTING TORNADO
TRAFFIC ON A 1-DIMENSIONAL RING

For adversarial traffic patterns, the focus of an adaptive
routing algorithm must change as load is increased. At low
loads, packets should be routed minimally in order to min-
imize delays. As loads increase, minimizing delay requires
shifting some packets to non-minimal routes in order to bal-
ance channel load. In this section, we derive the optimal
adaptive routing algorithm for the tornado traffic pattern
on a ring network and compare it to the performance of
GAL. While GAL matches this optimal algorithm at both
very low loads and loads near saturation, it transitions too
slowly from minimal to non-minimal at intermediate loads,
resulting in delays approximately 100 cycles more than op-
timal. This behavior is representative of GAL on all adver-
sarial patterns because its adaptation does not begin until
the delays of the network are already large.

2.1 Routing Tornado Traffic to Balance L oad

We consider an adversarial traffic pattern (called tornado
or TOR) on a simple 8-node ring network (Figure 1). In this
pattern, node i sends all traffic nearly half-way-around the
ring, to node ¢ + k/2 — 1. We will consider this pattern on

LAll additions and subtractions on node coordinates are
done modulo k (k = 8 for an 8 node ring).
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Figure 1: An 8 node ring (8-ary 1l-cube).

a simple 8-node ring network (Figure 1). Minimally routing
TOR results in all traffic traversing the clockwise links like a
tornado, leaving the counterclockwise links completely idle
(Figure 2). The clockwise link from node ¢ carries traffic
from three nodes: i, ¢ — 1, and ¢ — 2. Assuming unit band-
width channels, each node can inject traffic at a rate of at
most 1/3 before the clockwise links become saturated. Thus,
the throughput is only ©® = 1/3 with minimal routing,.
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Figure 2: Minimally routed tornado traffic. Clock-
wise link load is 3. Counter clockwise link load is
0.

To maximize the throughput under tornado, non-minimal
routing is required to balance load: each node must send 5/8
of its traffic minimally and 3/8 of its traffic non-minimally
at the saturation load as shown in Figure 3. The result-
ing throughput is © = 8/15 and is 60% higher than the
throughput under minimal routing.

While this routing approach maximizes throughput, it
would unnecessarily increase delay if used at loads below sat-
uration. Next we discuss how the fraction of traffic routed
minimally should change as a function of injected load for
optimal delay. In order to understand the problem bet-
ter, we first present an approximate theoretical model from
queueing theory.

Figure 3: Routing tornado traffic for maximum
throughput. Load is shown for a clockwise and a
counter clockwise link depicted in dotted lines. The
dashed lines contribute a link load of % while the
solid lines contribute a link load of %. All links are
equally loaded with a load of %.

2.2 A Model from Queueing Theory

Queueing networks have been studied extensively in lit-
erature. A popular way to study a network of queues is



to use the Jackson open queueing network model [6]. This
model assumes a product-form? network in which each queue
is an independent M/M/1 queue. However, it differs from
the standard model by assuming that service times, instead
of being constant, are exponentially distributed with unit
mean. Based on an idea first considered by Kleinrock [7],
Mitzenmacher [8] observed that assuming each queue to
be an independent M/D/1 queue is a good approximation.
While the approximate model no longer strictly remains a
product-form network, the results prove accurate in prac-
tice.

For our queueing model, we assume each queue to be an
independent M/D/1 queue with arrival rate A and service
rate 1. The queueing delay of a packet in such a queue is
given by [1],

1

QW) = =N

If a packet traverses a linear network of m such queues, it
incurs a queueing delay due to m queues and a hop delay of
m. Its total delay is approximated by

L™(\) = mQ(N) + m.

We shall use this approximate model in the rest of this dis-
cussion.

2.3 Routing Tornado Traffic for Optimal De-
lay

When routing TOR optimally, there will be two classes of
packets — those that are routed minimally and those sent
along the non-minimal path. Let the injection load for each
node be A and the rates at which each node sends packets
minimally and non-minimally be z; and x2, respectively.
Then, below saturation,

A=z1+ T2 (1)

Packets sent minimally (non-minimally) must traverse 3
(5) M/D/1 queues each with an arrival rate of 3\ (5)).°
Hence, the delay encountered by a packet sent minimally is
given by

3

and the delay of a non-minimally routed packet is given by

5

DQ(.TQ) = L5(5)\) = m

+ 5. 3)
Then the average delay is simply a weighted sum of these
delays,

D)) = %[xlDl(m) + z2Da(x2)]. (4)

We now analyze the fraction of traffic sent minimally and
non-minimally to minimize delay as described in [1]. Clearly,
x1 > x2 since it makes no sense sending more traffic along
the non-minimal path.

2A network is product-form if in equilibrium distribution
each queue appears as though it were an independent pro-
cess with Poisson arrivals.

3 At steady state and due to the symmetry of the network
and the traffic pattern, we assume all nodes route traffic
identically.

CLAIM 1. In order to minimize the average packet delay,
each node must start sending traffic non-minimally at an
injection load of As = 0.14.

PrOOF. For minimum delay, each node should send all
traffic along the minimal path until the incremental delay
of routing minimally is greater than that of routing non-
minimally. The routing will be strictly minimal as long as

oD(A) _ 0D(0)
L = 5
Or1 — Oz ( )
Solving Equations (4) and (5), we get A < 0.14. Hence, the
switch point from strictly minimal to non-minimal occurs at
As = 0.14.

O

CramM 2. The optimal fraction of traffic sent minimally
and non-minimally is given by Figure 4.
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Figure 4: The optimal fraction of traffic in the min-
imal and non-minimal paths for tornado traffic on
an 8-node ring.

PROOF. Once each node starts to send traffic non-minimally
(A > Xs), the optimal fraction of load sent minimally (x1)
and non-minimally (z2) will be such that the incremental
delay along either directions is the same:

OD(.Tl) o 8D(x2)
8901 - 8952 ' (6)

Solving Equations (6), (1) numerically results in the plots
shown in Figure 4. 1 = X and z2 = 0 until A = \;. After
that, both z1,z2 > 0 and are consistent with Equation (6).
Finally, after the network saturates at A = 0.53, 1 = 0.33
and zo = 0.2. O

Substituting the values of z; and z2 in Equations (2)
and (3) we get the average minimal, non-minimal and over-
all delay of the packets according to our model. As shown
in Figure 5, the average delays along both paths are similar
and give a low overall average latency.

2.4 GAL on Tornado Traffic

The GAL algorithm [13] has per-destination injection queue
sets in every node to sense network load imbalance. Each
of queue set is separated into a minimal and a non-minimal
injection queue. GAL routes a packet minimally if the oc-
cupancy of the minimal injection queue associated with the
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Figure 5: Optimal minimal, non-minimal and overall
latency of the theoretical model for tornado traffic
on an 8-node ring.
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Figure 6: GAL on tornado traffic on an 8 node ring
at the point when it switches from minimal to non-
minimal. Only 1 set of injection queues correspond-
ing to the destination is shown.

packet’s destination is below a threshold. Otherwise, the
threshold is exceeded and the packet is injected into the
non-minimal injection queue and routed non-minimally.

With this approach, GAL routes packets minimally until
the capacity along the minimal path is saturated. When this
happens, the queues along the minimal path start to fill up
and the network back-pressure implicitly transfers this in-
formation to the injection queues in the source node. When
the occupancy of the minimal injection queue surpasses a
threshold, T', packets are injected into the non-minimal in-
jection queue and the routing switches from strictly minimal
to non-minimal. This switching does not happen until all the
queues along the minimal path are completely filled as shown
in Figure 6. Hence, the load at which this switch occurs is
simply the saturation load for strictly minimal routing of
the tornado pattern and is given by A = 0.33. Figure 7
shows how GAL starts to send traffic non-minimally only
after the injection load, A > 0.33. The accepted throughput
at saturation is still the optimal value of 0.53.

However, the subtle point to note is that while GAL rout-
ing is throughput-optimal on the tornado pattern, delay in
the switching from strictly minimal to non-minimal incurs
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Figure 7: GAL throughput for tornado traffic on an
8 node ring

a high price as far as the latency is concerned.
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Figure 8: Latency-load plot for GAL on tornado
traffic on an 8 node ring

Figure 8 shows the average minimal, non-minimal and
overall packet delay for GAL. Since GAL routes minimally
all the way to the saturation point for the strictly minimal
routes, the latency incurred by the minimal packets after a
load of 0.33 is very high. This causes the average overall
packet delay, which is a weighted average of the minimal
and non-minimal delays, to be of the order of 100s of cycles
for a 8 node network much before the network saturation
point of 0.53.

3. ADAPTIVE CHANNEL QUEUE
ROUTING (CQR)

3.1 A Casefor Channel Queue Routing

We observe that the reason GAL performs so poorly on
tornado traffic is that it waits too long to switch its policy
from strictly minimal to non-minimal. It does so because
its congestion sensing mechanism uses the occupancy of the
injection queues which is not very responsive to network
congestion. CQR addresses this problem by sensing net-
work load imbalance using its channel queues while at the
same time relying on the network’s implicit backpressure to
propagate information from further parts of the network.
Consider the highlighted node 2 in Figure 9. For the tor-
nado traffic pattern, the minimal and non-minimal queues



for this node are the clockwise and counterclockwise out-
going queues, respectively. The occupancy of both these
queues are labeled as ¢n, and ¢nm. The node calculates
the average queue occupancy ¢ = (¢m + Gnm)/2. Then, if
gm —q < T, a threshold value, the packet is routed min-
imally else it is sent along the non-minimal path. Such a
congestion sensing scheme is more responsive than the one
used in GAL and unlike GAL, the switch occurs much before
all the minimal queues are filled as shown in Figure 9. We
call this routing method Channel Queue Routing (CQR).

p
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Figure 9: CQR on tornado traffic on an 8 node ring
at the point when it switches from minimal to non-
minimal.
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Figure 10: CQR throughput on tornado traffic on
an 8 node ring

Figure 10 shows the fraction of traffic sent the minimal
and non-minimal way as the injected load increases. The
switch point is very close to the the one that we derived in
or model. Since, the switch point for CQR on TOR is near-
optimal, it gives a much smaller average overall delay as
shown in Figure 11. The latency-load curve is very similar
to the one we derived in Figure 5. It should be noted that
the plots do not exactly match the model that we described
as the model itself is based on an approximation and the
queues are not strictly a network of independent M/D/1
queues.

3.2 CQRonHigher Dimension TorusNetwor ks

Unlike the one dimensional case, where there are just two
possible paths for each packet — one short and one long
— there are many possible paths for a packet in a multi-
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Figure 11: Latency-load plot for CQR on tornado
traffic on an 8 node ring

dimensional network. We divide these possible paths based
on the directions (+ or —) in each dimension. Hence, for a
2 dimension network, there are 4 quadrants (++, +—, —+
and ——) for each source-destination pair. Figure 12 shows
the 4 quadrants for the source-destination pair (0, 0), (2, 3).
Quadrant I is the minimal quadrant while the others are
non-minimal.

First, let us look at how we select the quadrant to route in
a k-ary n-cube. Suppose the source nodeis s = {s1,s2,...,8n}
and the destination node is d = {di1,d2,...,dn}, where z;
is the coordinate of node x in dimension i. We compute a
minimal direction vector r = {ri,r2,...,r,}, where for each
dimension i, we choose r; to be +1 if the short direction is
clockwise (increasing node index) and —1 if the short direc-
tion is counterclockwise (decreasing node index). Choosing
a quadrant to route in simply means choosing a quadrant
vector ¢ where for each dimension ¢ we could choose ¢; = r;
(¢s = —r;) if we want to route minimally (non-minimally) in
that dimension. In order to get approximate quadrant con-
gestion information just like in the 1 dimension case, each
node records its outgoing channel queue occupancies along
both directions (+ and —) in each dimension. Then the con-
gestion, @j, for quadrant j is approximated by the sum of
the outgoing queues in the corresponding directions in each
dimension given by ¢q. Next the average quadrant conges-

— 2n .
tion, @@ = Eﬁi is computed. Finally, the quadrant m

with the smallest distance from s to d whose congestion sat-
isfies the inequality Q. — Q < T, (where T is a threshold
value), is selected.

Once the quadrant is selected, the packet is routed adap-
tively within that quadrant. A dimension i is productive
if, the coordinate of the current node z; differs from d;. In
other words, it is productive to move in that dimension since
the packet is not already at the destination coordinate. At
each hop, the router picks the productive dimension with
the shortest output queue to advance the packet.

For example, consider the case above where we are rout-
ing from s = (0,0) to d = (2, 3) in an 8-ary 2-cube network.
Suppose the minimal quadrant congestion is small enough
such that it is less than a threshold above the average quad-
rant congestion. Then the algorithm routes the packet com-
pletely within quadrant I (+1,+41). One possible route of
the packet is shown in bold in Figure 13. On the first hop,
the productive dimension vector is p = (1,1) that is both
the z and y dimensions are productive. Suppose the channel
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Figure 12: Quadrants in a k-ary 2-cube for a given
source S (0,0) and destination D (2,3).

queue in the x dimension is shorter so the packet proceeds
to node (1,0). At (1,0) p is still (1,1) so the packet can still
be routed in either x or y. At this point, suppose the queue
in the y dimension is shorter, so the packet advances to node
(1,1). At (1,1) pis still (1,1) and this time the route is in x
o (2,1). At this point, the packet has reached the destina-
tion coordinate in x so p = (0, 1). Since the only productive
dimension is y, the remaining hops are made in the y di-
mension regardless of queue length. A second possible route
is shown in dashed as an example of routing in quadrant II
(—1,41).

Figure 13: Example route from S (0,0) to D (2,3)
through the minimal quadrant (4+1,+1) and a non-
minimal quadrant (-1,41).

3.3 Virtual Channels and Deadlock

Our implementation of CQR requires 3 virtual channels
(VCs) per unidirectional physical channel to achieve dead-
lock freedom in the network. This is an extension of the
scheme proposed in the x-channels algorithm [5] for worm-
hole flow control developed for the non-minimal GOAL al-
gorithm. For a proof of deadlock freedom for the scheme,
refer to [11].

4. PERFORMANCE EVALUATION

In this section, we present results on steady-state through-
put, latency at intermediate loads, stability, and transient
response to dynamic traffic.

4.1 Experimental Setup

Measurements in this section have been made on a cycle-
accurate network simulator in which the routing decision one
cycle for each algorithm. Each node has an infinite source
queue to model the network interface. The router is output
queued and queues packets into one of the 3 (16 flit deep) VC
buffers per physical output channel. Each packet is assumed
to be one flit long to separate the routing algorithm study
from flow control issues. The total buffer resources are held
constant across all algorithms (the product of the number of
VCs and the VC channel buffer depth is kept constant). The
threshold value for CQR used in the experiments is 2.0. All
contention is resolved using age-based arbitration, always
giving priority to a packet with an older time-stamp since
injection. All latency numbers presented are measured since
the time of birth of the packets and include the time spent
by the packets in the source queues. We have simulated
two topologies, an 8-ary 2-cube and a 16-ary 2-cube, but
present only the results for the 8-ary 2-cube topology due
to space constraints. The results obtained for the 16-ary
2-cube topology follow the same trends.

All simulations were instrumented to measure steady-state
and transient performance with a high degree of confidence.
For the steady-state performance, the simulator was warmed
up under load without taking measurements until none of
the queue sizes changed by more than 1% over a period of
100 cycles. Once the simulator was warmed up, a sample of
injected packets were labeled for measurement. This sample
size was chosen to ensure that measurements are accurate
to within 3% with 99% confidence. The simulation was then
run until all labeled packets reached their destinations.

4.2 Summary of Steady-State Results

Both CQR and GAL are non-minimal, adaptive algorithms
that combine the best features of minimal algorithms on be-
nign traffic and of load-balancing algorithms on adversarial
traffic patterns. Table 1 shows how these two algorithms
incorporate the plus points of a minimal adaptive algorithm
(MIN AD) and a load-balancing one called GOAL. MIN AD
(or the *-channels algorithm [5]) always routes in the min-
imal quadrant, routing adaptively within it. GOAL (Glob-
ally Oblivious Adaptive Locally [11]) obliviously chooses a
quadrant, ¢, to route in according to a weighted probability
distribution and then routes within ¢ adaptively.

| [ MIN AD | GOAL | GAL | CQR |

Obenign 1.0 0.75 1.0 1.0
Onard 0.33 0.53 0.53 0.53

Oavg 0.63 0.67 0.73 0.7

Ous 0.46 0.48 0.49 0.49

Low Load Latency 4.45 6.17 4.45 4.45

Table 1: Table summarizing the advantages of CQR
and GAL over a minimal algorithm (MIN AD) and a
load-balancing one (GOAL). The throughput is nor-
malized to network capacity and latency is presented
in cycles.

The table shows that at low loads and on a representa-
tive benign traffic pattern, Uniform Random (UR), (Near-
est Neighbor traffic is another benign traffic pattern), CQR
and GAL route all traffic minimally and thus match the low
latency and high throughput (Gpenign) of minimal routing



algorithms on such “friendly” traffic. On a hard traffic pat-
tern, TOR, (and also patterns such as Transpose and Bit
Complement®) that cause load imbalance in the network,
CQR and GAL route minimally at low loads and then switch
to non-minimal routing as load imbalance is detected. Thus,
both CQR and GAL combine the best features of minimal
algorithms (low latency at low load and high throughput
on benign traffic) and obliviously load balanced algorithms
(high throughput on adversarial traffic). GAL has the high-
est average throughput across a sample of 1,000 random
permutations (depicted as ©g4vg). Finally, since all the al-
gorithms in the table are adaptive, they are able to route
around hot-spots giving high throughput on Hot-Spot traffic
(shown as Ops).

To summarize, CQR is able to exactly match the perfor-
mance of GAL across all the figures of merit described above.
The only place where CQR’s performance marginally de-
grades over that of GAL is that its average throughput over
1,000 random permutations is 0.70 compared to 0.73 for
GAL. In Section 2, we have already discussed the tremen-
dous improvement of CQR over GAL in latency when it has
to adapt to route non-minimally at loads close to satura-
tion. In the rest of this section, we focus on CQR’s latency
at intermediate loads, stability and transient response to
dynamic traffic.

4.3 Latency at Intermediate L oads

Probably the biggest improvement of CQR over GAL is
that it delivers packets with much lower latency than GAL

for patterns which require the algorithms to route non-minimally

for optimal throughput. This effect is more pronounced for
injection loads closer to saturation when the non-minimal
paths have to be used to give higher system throughput.
Section 2 shows an example of CQR’s improvement over
GAL giving upto 20x lower average delay than GAL on
TOR in the injection load range of 0.30 — 0.53.
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Figure 14: Latency profile of CQR and GAL for the
2D-tornado traffic.

Figure 14 shows how the advantage of CQR over GAL ex-
tends to a two dimension network — an 8-ary 2-cube. The
traffic pattern is the 2-dimension version of the tornado traf-
fic on aring i.e., source (i, j) sends to (i+k/2—1, j+k/2—1).
GAL’s latency-load plot rises up in steps which correspond
to the points where a particular quadrant saturates and
GAL starts routing along the next non-minimal quadrant.
There are only 2 such steps for 3 non-minimal quadrants

“For details of all the traffic patterns refer to [11].

as quadrants 2 and 3 are identical in terms of the distance
from the source to the destination. In contrast, CQR has
a very sharp latency profile giving upto 15X lower average
delay than GAL in the injection load range of 0.30 — 0.53.
Finally, Figure 15 shows a similar latency-load profile for
GAL and CQR on the 8-ary 2-cube network on a randomly
picked traffic permutation.
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Figure 15: Latency profile of CQR and GAL for a
random permutation.

4.4 Stability

An important property of any routing algorithm is its
stability. An algorithm is stable if the accepted through-
put remains constant even as the offered load is increased
beyond the saturation point. In order to be stable, non-
minimal, adaptive algorithms must distinguish between con-
gestion caused by load imbalance and congestion caused by
saturation of a load balanced network. In the former case,
rerouting traffic, possibly non-minimally, can alleviate this
imbalance and increase throughput. However, in the load
balanced, but saturated case, rerouting traffic may intro-
duce imbalance and decrease throughput. We examine a
simple example to demonstrate the necessity of controlling
the fraction of packets sent non-minimally.

Consider the case of routing UR traffic with GAL. For
an offered load beyond saturation, traffic will initially be
routed minimally as the minimal injection queues are empty.
Since the network cannot sustain all the traffic, backpres-
sure will cause packets to back up into the minimal injection
queues. Although minimal routing perfectly balances load
for UR traffic, the occupancy of these queues will eventually
exceed the threshold and some traffic will be routed non-
minimally. At this point, throughput will begin to drop as
channel bandwidth is wasted by non-minimal packets (Fig-
ure 16(a)). If, instead, packets had not been allowed to route
non-minimally, throughput would have remained stable.

The reason GAL is unstable beyond saturation for a traf-
fic pattern that does not require non-minimal routing is that
the source queue traffic interferes with the routing decision
made using the injection queue occupancy.® Unlike GAL,
CQR makes its routing decision using the channel queues as
described in Section 3. Hence, it does not mix up the conges-
tion due to load imbalance and that due to post-saturation
injection load and is therefore, stable (Figure 16(b)).

5A way around this problem is to adaptively change the
value of the threshold while monitoring the throughput de-
livered for each source-destination pair (see [13]). However,
the scheme is both expensive and complex to implement.



GAL UNSTABLE CQR STABLE

~

Accepted Throughput
Accepted Throughput
c o o o o o

°

s 2

°

°

500 1000 1500 2000 2500
Cycle #

500 1000 1500 2000 2500
Cycle #

(a) (b)

Figure 16: Performance of GAL and CQR on UR
traffic at 1.1 offered load. (a) Throughput decreases
over time for GAL as it is unstable post saturation
(b) CQR is stable post saturation.

45 Dynamic Traffic Response

Traditionally, most adaptive routing algorithms in inter-
connection networks have been evaluated with static traffic
patterns and only their steady-state performance has been
studied [5, 4, 11]. However, adaptive routing algorithms
are characterized by both a steady-state and a transient re-
sponse. In this section, we demonstrate how CQR’s routing
mechanism gives much better transient response than GAL.

451 Sep Response

The first experiment we perform is to subject the network
to a traffic pattern that requires the algorithm to adapt from
minimal to non-minimal routing — tornado traffic. The
time taken for the algorithm to adapt to congestion is both
a function of the routing decision mechanism and the per-
channel flow control. In order to focus on the routing deci-
sion, we keep the channel queues for each algorithm the same
(16 flit buffers per virtual channel in our experiments). We
then impose the tornado traffic pattern at a load of 0.45 at
cycle 0 and measure the step response of GAL and CQR.
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Figure 17: Transient response of CQR and GOAL
to the tornado traffic pattern at 0.45 load started at
cycle 0.

Figure 17 shows the step response of both algorithms av-
eraged over 100 runs. The response of GAL is much slower
than CQR taking as much as 4x the number of cycles to
reach peak throughput. This is because in order to adapt to
routing non-minimally, GAL must wait till the minimal in-
jection queues fill up and surpass their threshold. However,

since CQR senses load imbalance using channel queues, its
step response is smooth reaching peak throughput in just 30
cycles.

45.2 Barrier Model

In the next transient experiment, we simulate the com-
munication between the processors in a multi-processor en-
vironment. In this model we assume that the nodes of
a multi-processor have a fixed amount of computation to
perform between synchronization primitives called barriers.
Each processor waits till every processor has completed its
communication. This model assumes that all the packets
are in the node’s source queue before starting instead of
the usual Poisson-like injection process as used in the traffic
patterns described before. The number of cycles that each
processor waits is then a function of how fast the routing
algorithm adapts to network congestion.

In order to stress the adaptivity of the two algorithms,
we choose the destinations of each packet according to the
2D-tornado traffic pattern — i.e., each node (z, j) sends to
(i+ g - 1,5+ g —1). The number of packets that a node
has to communicate is called the batch size. The latency
measured is the number of cycles taken for all the processors
to completely route their batch of packets. We report this
latency normalized to the batch size.
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Figure 18: Dynamic response of CQR and GAL v.s.
the batch size per node showing CQR’s faster adap-
tivity.

Figure 18 shows the response of CQR and GAL as the
batch size is swept from 2 to 10* packets (shown in logarith-
mic scale). For small batch sizes the latency is the same for
both the algorithms as there is little congestion in the net-
work. For extremely large batch sizes, the latency is again
the same and is given by the reciprocal of the throughput of
the algorithm on the 2D-tornado traffic (0.53 for both CQR
and GAL). The interesting region in the plot is when the
batch size ranges from 5 to 2,000 packets. This region un-
derscores the importance of the more responsive congestion
sensing mechanism of CQR which gives as much as 1.5x
performance improvement over GAL.

4.6 Livelock and Packet Ordering

Livelock is a condition whereby a packet keeps circulating
within the network without ever reaching its destination.
Freedom from such a critical condition must be guaranteed.
Minimal algorithms like MIN AD guarantee livelock freedom
with fair arbitration since each channel traversed by a packet



reduces the distance to the destination. Non-minimal algo-
rithms like GOAL, GAL and CQR also provide deterministic
freedom from livelock. Once a quadrant has been selected
for a packet, the packet monotonically makes progress in
that quadrant, reducing the number of hops to the destina-
tion at each step. Since there is no incremental misrouting,
all packets reach their destinations after a predetermined,
bounded number of hops.

The use of an adaptive routing algorithm can and will
cause out of order delivery of packets. If an application
requires in-order packet delivery, a possible solution is to
reorder packets at the destination node using the well known
sliding window protocol [14].

5. CONCLUSION

In this paper we have introduced channel queue routing
(CQR), a globally adaptive routing algorithm for Torus,
k-ary n-cube topology, networks. Like GAL, CQR senses
global congestion and makes an adaptive global routing de-
cision to route minimally at low loads and on local traffic
while routing non-minimally to load balance difficult traf-
fic patterns at high loads. CQR, like GAL, matches the
throughput of minimal algorithms on local patterns, and
load-balanced oblivious algorithms on difficult patterns —
something that other algorithms, that do not make a global
adaptive decision, cannot do.

Channel queue routing overcomes a number of issues asso-
ciated with GAL. Most importantly, the latency for CQR at
loads that require non-minimal routing is much lower than
for GAL. This is because it does not need to run the minimal
traffic well into saturation, with the resulting high latencies,
before switching to non-minimal routing. CQR starts send-
ing packets along non-minimal routes as soon as the delays
due to minimal and non-minimal routing are matched —
resulting in minimum latency.

CQR also has a much faster transient response than GAL.
This is because the channel queue rapidly reflects global con-
gestion while the injection queue (used for sensing in GAL)
requires that all of the queues along the minimum paths fill
up before sensing congestion. CQR is also unconditionally
stable while GAL requires a threshold adaptation mecha-
nism to give stable performance. Finally, CQR is very sim-
ple to implement compared to GAL.

In the future we plan to look at extending the benefits
of CQR to other network topologies. We plan to generalize
the concepts of quadrants to sets of routes in an arbitrary
topology and to develop methods based on channel queues
to sense congestion in these path sets.
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